

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/jasigcas/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/jasigcas/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

layout: default
title: CAS - Home

Enterprise Single Sign-On

	Spring Webflow/Spring Boot Java server component.

	Pluggable authentication support (LDAP,
Database, X.509, SPNEGO,
JAAS, JWT,
RADIUS, MongoDb, etc)

	Support for multiple protocols (CAS, SAML, WS-Federation,
OAuth2, OpenID, OpenID Connect)

	Support for multifactor authentication via a variety of
providers (Duo Security, FIDO U2F,
YubiKey, Google Authenticator, etc)

	Support for delegated authentication to external providers such as ADFS, Facebook, Twitter, SAML2 IdPs, etc.

	Monitor and track application behavior, statistics and logs in real time.

	Manage and register client applications and services with specific authentication policies.

	Cross-platform client support (Java, .Net, PHP, Perl, Apache, etc).

	Integrations with InCommon, Box, Office365, ServiceNow, Salesforce, Workday, WebAdvisor, Drupal, Blackboard, Moodle, Google Apps, etc.

Contribute

To learn how to contribute to the project, please see this guide.

Getting Started

We recommend reading the following documentation in order to plan and execute a CAS deployment.

	Architecture

	Getting Started

	Installation Requirements

	Overlay Installation

	Authentication

	Application Registration

	Attribute Release

Demos

The following demos are provided by the Apereo CAS project:

| Demo | Source Branch | Location
|————————-|————————–|—————————————————-
| CAS Overlay Project Initializr | heroku-casinitializr | [image:] [https://casinitializr.herokuapp.com]
| CAS Web Application Server | heroku-caswebapp | [image:] [https://jasigcas.herokuapp.com/cas]
| CAS Services Management Server | heroku-mgmtwebapp | [image:] [https://jasigcasmgmt.herokuapp.com/cas-management]
| CAS Boot Administration Server | heroku-bootadminserver | [image:] [https://casbootadminserver.herokuapp.com/]
| CAS Zipkin Server | heroku-zipkinserver | [image:] [https://caszipkinserver.herokuapp.com/]
| CAS Service Discovery Server | heroku-discoveryserver | [image:] [https://caseureka.herokuapp.com/]
| CAS Configuration Server | heroku-casconfigserver | [image:] [https://casconfigserver.herokuapp.com/casconfigserver]

Credentials used for the above demos, where needed, are: casuser / Mellon.

It is important to note that these are public demo sites, used by the project for basic showcases and integration tests. They are NOT set up for internal demos as they may go up and down as the project needs without notice.

If you have a need for a demo instance with a modified UI, that would be one you set up for your deployment.

Development

CAS development is powered by:

 layout: null

layout: null

	Planning
	Architecture

	Getting Started

	Security Guide

	Upgrade Guide

	Release Policy

	Maintenance Policy

	Installation
	Requirements

	WAR Overlays

	Docker Deployment

	Servlet Containers

	Troubleshooting Guide

	Configuration
	Overview

	Configuration Server

	Properties & Settings

	Configuration Security

	Configuration Extensions

	Reloading Changes

	Clustered Deployments

	Authentication
	Overview

	Methods
	LDAP
	Password Policy

	Database
	Password Policy

	JAAS

	X.509

	RADIUS

	SPNEGO

	Remote Address

	Trusted

	JWT

	Rest

	Stormpath

	Basic

	Digest

	Apache Shiro

	MongoDb

	Pac4J

	Whitelist

	Blacklist

	Custom

	Delegation
	ADFS

	Throttling

	Proxying

	Events

	Surrogate

	ClearPass

	Attributes
	Attribute Resolution

	Attribute Release
	Principal Id

	Release Policies

	Value Filters

	Consent

	Caching

	Multifactor Authentication
	Overview

	Providers
	Duo Security

	YubiKey

	RSA/Radius

	Google Authenticator

	Authy

	Microsoft Azure

	FIDO U2F

	Custom

	Triggers

	Trusted Devices

	Adaptive

	GUA

	SSO & SLO
	SSO Session

	Remember Me

	Logout & SLO

	Password Management
	Overview

	Ticketing
	Overview

	Expiration Policies

	Storage
	Hazelcast

	Ehcache

	Memcached

	JPA

	Ignite

	Couchbase

	Infinispan

	Redis

	MongoDb

	DynamoDb

	Services
	Overview

	Management Webapp

	Access Strategy

	Proxy Policy

	Custom Properties

	Storage
	InMemory XML

	JSON

	YAML

	Mongo

	LDAP

	JPA

	DynamoDb

	Couchbase

	Logs & Audits
	Logging

	Audits

	Monitoring & Statistics
	Overview

	Administration Server

	Metrics

	Monitors

	Sentry

	User Interface
	Overview
	CSS & JavaScript

	Views

	Localization

	Dynamic Themes

	Acceptable Usage Policy

	Webflow Management
	Overview

	Error Handling

	Extending Webflow

	Session Persistence

	High Availability
	Overview

	Performance Testing

	Service Discovery

	Protocols
	Overview

	CAS

	OpenID

	OAuth

	OpenID Connect

	WS-Federation

	SAML
	SAML1

	SAML2

	REST

	Integration
	SAML2 Service Providers
	Google Apps

	Google reCAPTCHA

	Google Analytics

	SCIM Provisioning

	CAS Clients

	Groovy Shell

	Shibboleth Identity Provider

	Developer
	Javadocs [http://www.javadoc.io/doc/org.apereo.cas/cas-server]

	Issue Tracker [https://github.com/apereo/cas/issues]

	Security Vulnerability Response

	PMC

	Contributor Guidelines

	Code Conventions

	Release Process

	Build Process

 Protocols

layout: default
title: CAS - Protocol Overview

Protocols

The following protocols are supported and provided by CAS:

	CAS

	OpenID

	OAuth

	OpenID Connect

	WS Federation

	SAML1

	SAML2

	REST Protocol

 REST Protocol

layout: default
title: CAS - CAS REST Protocol

REST Protocol

The REST protocol allows one to model applications as users, programmatically acquiring
service tickets to authenticate to other applications. This means that other applications would be able
to use a CAS client to accept Service Tickets rather than to rely upon another technology such as
client SSL certificates for application-to-application authentication of requests. This is achieved
by exposing a way to RESTfully obtain a Ticket Granting Ticket and then use that to obtain a Service Ticket.

Usage Warning!The REST endpoint may
 become a tremendously convenient target for brute force dictionary attacks on CAS server. Consider
 enabling throttling support to ensure brute force attacks are prevented upon authentication failures.

Configuration

Support is enabled by including the following to the overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-rest</artifactId>
 <version>${cas.version}</version>
</dependency>

Request a Ticket Granting Ticket

POST /cas/v1/tickets HTTP/1.0

username=battags&password=password&additionalParam1=paramvalue

Successful Response

201 Created
Location: http://www.whatever.com/cas/v1/tickets/{TGT id}

Unsuccessful Response

If incorrect credentials are sent, CAS will respond with a 400 Bad Request error
(will also respond for missing parameters, etc.). If you send a media type
it does not understand, it will send the 415 Unsupported Media Type.

Request a Service Ticket

POST /cas/v1/tickets/{TGT id} HTTP/1.0

service={form encoded parameter for the service url}

Successful Response

200 OK
ST-1-FFDFHDSJKHSDFJKSDHFJKRUEYREWUIFSD2132

Validate Service Ticket

Service ticket validation is handled through the CAS Protocol
via any of the validation endpoints such as /p3/serviceValidate.

GET /cas/p3/serviceValidate?service={service url}&ticket={service ticket}

Unsuccessful Response

CAS will send a 400 Bad Request. If an incorrect media type is
sent, it will send the 415 Unsupported Media Type.

Logout

Destroy the SSO session by removing the issued ticket:

DELETE /cas/v1/tickets/TGT-fdsjfsdfjkalfewrihfdhfaie HTTP/1.0

Ticket Status

Verify the status of an obtained ticket to make sure it still is valid
and has not yet expired.

GET /cas/v1/tickets/TGT-fdsjfsdfjkalfewrihfdhfaie HTTP/1.0

Successful Response

200 OK

Unsuccessful Response

404 NOT FOUND

Add Service

Support is enabled by including the following in your maven overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-rest-services</artifactId>
 <version>${cas.version}</version>
</dependency>

Invoke CAS to register applications into its own service registry. The REST
call must be authenticated as it requires a TGT from the CAS server, and furthermore,
the authenticated principal that submits the request must be authorized with a
pre-configured role name and value that is designated in the CAS configuration
via the CAS properties.

To see the relevant list of CAS properties, please review this guide.

POST /cas/v1/services/add/{TGT id} HTTP/1.0
serviceId=svcid&name=svcname&description=svcdesc&evaluationOrder=1234&enabled=true&ssoEnabled=true

Successful Response

If the request is successful, the returned value in the response would be
the generated identifier of the new service.

200 OK
5463544213

X.509 Authentication

The feature extends the CAS REST API communication model to non-interactive X.509 authentication
where REST credentials may be retrieved from a certificate embedded in the request rather than
the usual and default username/password.

This pattern may be of interest in cases where the internal network architecture hides
the CAS server from external users behind firewall or a messaging bus and
allows only trusted applications to connect to the CAS server.

Usage Warning!The X.509 feature over REST
provides a tremendously convenient target for claiming user identities. To securely use this feature, network
configuration MUST allow connections to the CAS server only from trusted hosts which in turn
have strict security limitations and logging.

Support is enabled by including the following in your maven overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-rest-x509</artifactId>
 <version>${cas.version}</version>
</dependency>

Request a Ticket Granting Ticket

POST /cas/v1/tickets HTTP/1.0
cert=<ascii certificate>

Successful Response

201 Created
Location: http://www.whatever.com/cas/v1/tickets/{TGT id}

CAS REST Clients

In order to interact with the CAS REST API, a REST client must be used to submit credentials,
receive tickets and validate them. The following Java REST client is available
by pac4j [https://github.com/pac4j/pac4j]:

String casUrlPrefix = "http://localhost:8080/cas";
CasRestAuthenticator authenticator = new CasRestAuthenticator(casUrlPrefix);
CasRestFormClient client = new CasRestFormClient(authenticator);

// The request object must contain the CAS credentials
final WebContext webContext = new J2EContext(request, response);
final HttpTGTProfile profile = client.requestTicketGrantingTicket(context);
final CasCredentials casCreds = client.requestServiceTicket("<SERVICE_URL>", profile);
final CasProfile casProfile = client.validateServiceTicket("<SERVICE_URL>", casCreds);
client.destroyTicketGrantingTicket(context, profile);

Throttling

To understand how to throttling works in CAS,
please review the available options.

By default, throttling REST requests is turned off.

 OAuth Protocol

layout: default
title: CAS - OAuth Protocol

OAuth Protocol

You can configure the CAS server with:

	OAuth client support, which means authentication can be delegated
through a link on the login page to a CAS, OpenID or OAuth provider.

	OAuth server support, which means you will be able to
communicate with your CAS server through the OAuth 2.0 protocol [http://oauth.net/2/].

 CAS Protocol

layout: default
title: CAS - CAS Protocol

CAS Protocol

The CAS protocol is a simple and powerful ticket-based protocol. The complete protocol specification may be found here.

It involves one or many clients and one server. Clients are embedded in CASified applications (called “CAS services”) whereas the CAS server is a standalone component:

	The CAS server is responsible for authenticating users and granting accesses to applications

	The CAS clients protect the CAS applications and retrieve the identity of the granted users from the CAS server.

The key concepts are:

	The TGT (Ticket Granting Ticket), stored in the TGC cookie, represents a SSO session for a user.

	The ST (Service Ticket), transmitted as a GET parameter in urls, stands for the access granted by the CAS server to the CASified application for a specific user.

Specification Versions

The following specification versions are recognized and implemented by Apereo CAS.

3.0.2

The current CAS protocol specification is 3.0.2. The actual protocol specification is available at here, which is hereby implemented by the Apereo CAS Server as the official reference implementation. It’s mainly a capture of the most common enhancements built on top of the CAS protocol revision 2.0. Among all features, the most noticeable update between versions 2.0 and 3.0 is the ability to return the authentication/user attributes through the new /p3/serviceValidate endpoint.

2.0

The version 2.0 protocol specification is available at CAS-Protocol-Specification.

Web flow diagram

[image: CAS Web flow diagram]

Proxy web flow diagram

One of the most powerful feature of the CAS protocol is the ability for a CAS service to act as a proxy for another CAS service, transmitting the user identity.

[image: CAS Proxy web flow diagram]

Other Protocols

Even if the primary goal of the CAS server is to implement the CAS protocol, other protocols are also supported as extensions:

	OpenID

	OAuth2

	SAML

	OpenID Connect

	REST

	WsFederation

Delegated Authentication

Using the CAS protocol, the CAS server can also be configured to delegate the authentication to another CAS server.

 OpenID Protocol

layout: default
title: CAS - OpenID Protocol

OpenID Protocol

OpenID is an open, decentralized, free framework for user-centric digital identity. Users represent
themselves using URIs. For more information see the http://www.openid.net.

CAS supports both the “dumb” and “smart” modes of the OpenID protocol. Dumb mode acts in a similar fashion
to the existing CAS protocol. The smart mode differs in that it establishes an association between the client and
the openId provider (OP) at the beginning. Thanks to that association and the key exchange done during association,
information exchanged between the client and the provider are signed and verified using this key. There is no need
for the final request (which is equivalent in CAS protocol to the ticket validation).

OpenID identifiers are URIs. The default mechanism in CAS support is an uri ending with the actual user login
(ie. http://my.cas.server/openid/myusername where the actual user login id is myusername).
This is not recommended and you should think of a more elaborated way of providing URIs to your users.

Pay Attention!OpenID protocol is NOT the same thing
as the OpenId Connect protocol whose details are documented here.

Configuration

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-openid-webflow</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties for this feature, please review this guide.

Registere Clients

Register clients in the CAS service registry:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "https://openid.example.org/myapp",
 "name" : "openid",
 "description" : "OpenID Sample Application",
 "id" : 10
}

OpenID Provider Delegation

Using the OpenID protocol, the CAS server can also be configured
to delegate the authentication to an OpenID provider.

 OpenID Connect Protocol

layout: default
title: CAS - OIDC Protocol

OpenID Connect Protocol

You can configure the CAS server with:

	OIDC client support, which means authentication can be delegated through a link on the
login page to OpenID Connect provider.

	OIDC server support, which means you will be able to communicate with your CAS server
through the OpenID Connect protocol [http://openid.net/connect/], having CAS act as an OP.

 CAS Protocol 3.0 Specification

layout: default
title: CAS - CAS Protocol Specification

[bookmark: headTop]

CAS Protocol 3.0 Specification

Authors, Version

Author: Drew Mazurek

Contributors:

	Susan Bramhall

	Howard Gilbert

	Andy Newman

	Andrew Petro

	Robert Oschwald [CAS 3.0]

	Misagh Moayyed

Version: 3.0.2

Release Date: 2015-01-13

Copyright ©

 2005, Yale University

Copyright ©

 2017, Apereo, Inc.

[bookmark: head1]

1. Introduction

This is the official specification of the CAS 1.0, 2.0 and 3.0 protocols.

The Central Authentication Service (CAS) is a single-sign-on / single-sign-off protocol
for the web.
It permits a user to access multiple applications while providing their
credentials (such as userid and password) only once to a central CAS Server
application.

[bookmark: head1.1]

1.1. Conventions & Definitions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 21191.

	“Client” refers to the end user and/or the web browser.

	“CAS Client” refers to the software component that is integrated with a web
application and interacts with the CAS server via CAS protocol.

	“Server” refers to the Central Authentication Service server.

	“Service” refers to the application the client is trying to access.

	“Back-end service” refers to the application a service is trying to access
on behalf of a client. This can also be referred to as the “target service.”

	“SSO” refers to Single Sign on.

	“SLO” refers to Single Logout.

	“” is a bare line feed (ASCII value 0x0a).

 SAML Protocol

layout: default
title: CAS - CAS SAML Protocol

SAML Protocol

CAS has support for versions 1.1 and 2 of the SAML protocol to a specific extent.
This document deals with CAS-specific concerns.

SAML2

CAS provides support for SAML2 Authentication.

Google Apps

CAS provides support for Google Apps Integration.

SAML 1.1

CAS supports the standardized SAML 1.1 protocol [http://en.wikipedia.org/wiki/SAML_1.1] primarily to:

	Support a method of attribute release

	Single Logout

A SAML 1.1 ticket validation response is obtained by validating a ticket via POST at the /samlValidate URI.

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-saml</artifactId>
 <version>${cas.version}</version>
</dependency>

Sample Request

POST /cas/samlValidate?ticket=
Host: cas.example.com
Content-Length: 491
Content-Type: text/xml

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <samlp:Request xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol" MajorVersion="1"
 MinorVersion="1" RequestID="_192.168.16.51.1024506224022"
 IssueInstant="2002-06-19T17:03:44.022Z">
 <samlp:AssertionArtifact>
 ST-1-u4hrm3td92cLxpCvrjylcas.example.com
 </samlp:AssertionArtifact>
 </samlp:Request>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample Response

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header />
 <SOAP-ENV:Body>
 <Response xmlns="urn:oasis:names:tc:SAML:1.0:protocol" xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
 xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" IssueInstant="2008-12-10T14:12:14.817Z"
 MajorVersion="1" MinorVersion="1" Recipient="https://eiger.iad.vt.edu/dat/home.do"
 ResponseID="_5c94b5431c540365e5a70b2874b75996">
 <Status>
 <StatusCode Value="samlp:Success">
 </StatusCode>
 </Status>
 <Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion" AssertionID="_e5c23ff7a3889e12fa01802a47331653"
 IssueInstant="2008-12-10T14:12:14.817Z" Issuer="localhost" MajorVersion="1"
 MinorVersion="1">
 <Conditions NotBefore="2008-12-10T14:12:14.817Z" NotOnOrAfter="2008-12-10T14:12:44.817Z">
 <AudienceRestrictionCondition>
 <Audience>
 https://some-service.example.com/app/
 </Audience>
 </AudienceRestrictionCondition>
 </Conditions>
 <AttributeStatement>
 <Subject>
 <NameIdentifier>johnq</NameIdentifier>
 <SubjectConfirmation>
 <ConfirmationMethod>
 urn:oasis:names:tc:SAML:1.0:cm:artifact
 </ConfirmationMethod>
 </SubjectConfirmation>
 </Subject>
 <Attribute AttributeName="uid" AttributeNamespace="http://www.ja-sig.org/products/cas/">
 <AttributeValue>12345</AttributeValue>
 </Attribute>
 <Attribute AttributeName="groupMembership" AttributeNamespace="http://www.ja-sig.org/products/cas/">
 <AttributeValue>
 uugid=middleware.staff,ou=Groups,dc=vt,dc=edu
 </AttributeValue>
 </Attribute>
 <Attribute AttributeName="eduPersonAffiliation" AttributeNamespace="http://www.ja-sig.org/products/cas/">
 <AttributeValue>staff</AttributeValue>
 </Attribute>
 <Attribute AttributeName="accountState" AttributeNamespace="http://www.ja-sig.org/products/cas/">
 <AttributeValue>ACTIVE</AttributeValue>
 </Attribute>
 </AttributeStatement>
 <AuthenticationStatement AuthenticationInstant="2008-12-10T14:12:14.741Z"
 AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
 <Subject>
 <NameIdentifier>johnq</NameIdentifier>
 <SubjectConfirmation>
 <ConfirmationMethod>
 urn:oasis:names:tc:SAML:1.0:cm:artifact
 </ConfirmationMethod>
 </SubjectConfirmation>
 </Subject>
 </AuthenticationStatement>
 </Assertion>
 </Response>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Configuration

To see the relevant list of CAS properties, please review this guide.

You may also need to declare the following Maven repository in
your CAS Overlay to be able to resolve dependencies:

<repositories>
 ...
 <repository>
 <id>shibboleth-releases</id>
 <url>https://build.shibboleth.net/nexus/content/repositories/releases</url>
 </repository>
 ...
</repositories>

 CAS Protocol 2.0 Specification

layout: default
title: CAS - CAS Protocol 2.0 Specification

[bookmark: headTop]

CAS Protocol 2.0 Specification

Author: Drew Mazurek
Contributors:
Susan Bramhall
Howard Gilbert
Andy Newman
Andrew Petro
Version: 1.0

Release Date: May 4, 2005
Copyright © 2005, Yale University

1. Introduction

This is the official specification of the CAS 1.0 and 2.0 protocols. It is subject to change.

1.1. Conventions & Definitions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”,
and “OPTIONAL” in this document are to be interpreted as described in RFC 2119[1].

	“Client” refers to the end user and/or the web browser.

	“Server” refers to the Central Authentication Service server.

	“Service” refers to the application the client is trying to access.

	“Back-end service” refers to the application a service is trying to access on behalf of a client. This can also be
referred to as the “target service.”

	 is a bare line feed (ASCII value 0x0a).

 WS Federation Protocol

layout: default
title: CAS - CAS WS Federation Protocol

WS Federation Protocol

CAS can act as a standalone identity provider, presenting support for the WS-Federation Passive Requestor Profile [http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html#_Toc223175002]. The core functionality
is built on top of Apache Fediz [http://cxf.apache.org/fediz.html] whose architecture is described here [http://cxf.apache.org/fediz-architecture.html].

Security Token Service

The WS-Trust OASIS standard specifies a runtime component called Security Token Service. A service consumer requests a security token from the STS which is sent to the service provider. Either the service provider can validate the security token on its own or sends a request to the STS for validation. This pattern is based on an indirect trust relationship between the service provider and the STS instead of a direct trust between the service provider and service consumer. As long as the service consumer is in the possession of a security token issued by a trusted STS, the service provider accepts this security token.

A key benefit of the STS is the reduced complexity for applications. A web service consumer doesn’t have to know how to create the various types of security tokens its service providers require. Instead, it sends a request to the STS containing the requirements of the client and the service provider and attaches the returned security token to the outgoing SOAP message to the service provider.

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-ws-sts</artifactId>
 <version>${cas.version}</version>
</dependency>

YAGNIYou do not need to explicitly incude this component
in your configuration and overlays. This is just to teach you that it exists. The security token service will be pulled
in automatically once you declare the identity provider. Only include this module in your overlay if you
need compile-time access to the components within.

Endpoints

| Endpoint | Description
|————————|———————————————————————————————————————-
| /cas/ws/sts | Presents the list of available SOAP services and their WSDL configuration for each REALM defined in the configuration.

Security Tokens

Security tokens issued are treated as CAS tickets, stored in the ticket registry under
the prefix STS and follow the same semantics as all other ticket types when it comes to persistence,
replication, etc. These tokens are closely tied to the lifetime of the ticket-granting tickets and match
their expiration policy. Tokens themselves do not have a lifespan outside a valid ticket-granting ticket
and support for ticket lifetime configuration is not present.

WS Federation Identity Provider

The security model of the STS builds on the foundation established by WS-Security and WS-Trust.
The primary issue for Web browsers is that there is no easy way to directly send web service (SOAP) requests.
Consequently, the processing must be performed within the confines of the base HTTP 1.1 functionality (GET, POST, redirects, and cookies)
and conform as closely as possible to the WS-Trust protocols for token acquisition.
The IdP is in charge of transforming the sign-in request of the browser to a SOAP request for the STS and the response of the
STS to the sign-in response for the browser. Further the browser user must authenticate with the IdP.

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-ws-idp</artifactId>
 <version>${cas.version}</version>
</dependency>

Endpoints

| Endpoint | Description
|———————————|——————————————————————————————————–
| /cas/ws/idp/metadata | Displays the current federation metadata based on the configuration realm for the identity provider.
| /cas/ws/idp/federation | Endpoint to receive initial GET authentication requests from clients, typically identified as the issuer.

Realms

At this point, by default security token service’s endpoint operate using a single realm configuration and identity provider
configuration is only able to recognize and request tokens for a single realm.
While support for multiple realms is not there yet, in general the underlying configuration
should allow for that feature to exist in later releases. The default realm recognized by
CAS is set to be urn:org:apereo:cas:ws:idp:realm-CAS. Registration of clients need to ensure this value is matched.

Register Clients

Clients and relying parties can be registered with CAS as such:

{
 "@class" : "org.apereo.cas.ws.idp.services.WSFederationRegisteredService",
 "serviceId" : "https://wsfed.example.org/.+",
 "name" : "Sample WsFed Application",
 "id" : 100
}

| Field | Description
|——————————-|————————————————————————————————–
| serviceId | Callback/Consumer url where tokens may be POSTed, typically matching the wreply parameter.
| realm | The realm identifier of the application, identified via the wtrealm parameter. This needs to match the realm defined for the identity provider. By default it’s set to the realm defined for the CAS identity provider.
| appliesTo | Controls to whom security tokens apply. Defaults to the realm.

Service definitions may be managed by the service management facility.

Claims

The following claims are supported by CAS for release:

| Claim | Description
|———————————|—————————————————————————————–
| EMAIL_ADDRESS_2005 | http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress
| EMAIL_ADDRESS | http://schemas.xmlsoap.org/claims/EmailAddress
| GIVEN_NAME | http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname
| NAME | http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
| USER_PRINCIPAL_NAME_2005 | http://schemas.xmlsoap.org/ws/2005/05/identity/claims/upn
| USER_PRINCIPAL_NAME | http://schemas.xmlsoap.org/claims/UPN
| COMMON_NAME | http://schemas.xmlsoap.org/claims/CommonName
| GROUP | http://schemas.xmlsoap.org/claims/Group
| MS_ROLE | http://schemas.microsoft.com/ws/2008/06/identity/claims/role
| ROLE | http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
| SURNAME | http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname
| PRIVATE_ID | http://schemas.xmlsoap.org/ws/2005/05/identity/claims/privatepersonalidentifier
| NAME_IDENTIFIER | http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier
| AUTHENTICATION_METHOD | http://schemas.microsoft.com/ws/2008/06/identity/claims/authenticationmethod
| DENY_ONLY_GROUP_SID | http://schemas.xmlsoap.org/ws/2005/05/identity/claims/denyonlysid
| DENY_ONLY_PRIMARY_SID | http://schemas.microsoft.com/ws/2008/06/identity/claims/denyonlyprimarysid
| DENY_ONLY_PRIMARY_GROUP_SID | http://schemas.microsoft.com/ws/2008/06/identity/claims/denyonlyprimarygroupsid
| GROUP_SID | http://schemas.microsoft.com/ws/2008/06/identity/claims/groupsid
| PRIMARY_GROUP_SID | http://schemas.microsoft.com/ws/2008/06/identity/claims/primarygroupsid
| PRIMARY_SID | http://schemas.microsoft.com/ws/2008/06/identity/claims/primarysid
| WINDOWS_ACCOUNT_NAME | http://schemas.microsoft.com/ws/2008/06/identity/claims/windowsaccountname
| PUID | http://schemas.xmlsoap.org/claims/PUID

The attribute release policy assigned to relying parties and services is able to link a given standard claim and map it to an attribute
that should be already available. The configuration looks as such:

{
 "@class" : "org.apereo.cas.ws.idp.services.WSFederationRegisteredService",
 "serviceId" : "https://wsfed.example.org/.+",
 "realm" : "urn:wsfed:example:org:sampleapplication",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.ws.idp.services.WSFederationClaimsReleasePolicy",
 "allowedAttributes" : {
 "@class" : "java.util.TreeMap",
 "GIVEN_NAME" : "givenName"
 }
 }
}

The above snippet allows CAS to release the claim http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname whose value
is identified by the value of the givenName attribute that is already retrieved for the authenticated principal.

Configuration

To see the relevant list of CAS properties, please review this guide.

You may also need to declare the following Maven repository in
your CAS Overlay to be able to resolve dependencies:

<repositories>
 ...
 <repository>
 <id>shibboleth-releases</id>
 <url>https://build.shibboleth.net/nexus/content/repositories/releases</url>
 </repository>
 ...
</repositories>

Troubleshooting

To enable additional logging, modify the logging configuration file to add the following:

<AsyncLogger name="org.apache.cxf" level="debug" additivity="false">
 <AppenderRef ref="console"/>
 <AppenderRef ref="file"/>
</AsyncLogger>

 Overview

layout: default
title: CAS - ADFS Integration

Overview

The integration between the CAS Server and ADFS delegates user authentication from CAS Server
to ADFS, making CAS Server a WS-Federation client.
Claims released from ADFS are made available as attributes to CAS Server, and by extension CAS Clients.

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-wsfederation-webflow</artifactId>
 <version>${cas.version}</version>
</dependency>

You may also need to declare the following Maven repository in your
CAS Overlay to be able to resolve dependencies:

<repositories>
 ...
 <repository>
 <id>shibboleth-releases</id>
 <url>https://build.shibboleth.net/nexus/content/repositories/releases</url>
 </repository>
 ...
</repositories>

JCE RequirementIt's safe to make sure you have the proper JCE bundle installed in your Java environment that is used by CAS, specially if you need to consume encrypted payloads issued by ADFS. Be sure to pick the right version of the JCE for your Java version. Java versions can be detected via the java -version command.

WsFed Configuration

Adjust and provide settings for the ADFS instance, and make sure you have obtained the ADFS signing certificate
and made it available to CAS at a location that can be resolved at runtime.

To see the relevant list of CAS properties, please review this guide.

Encrypted Assertions

CAS is able to automatically decrypt SAML assertions that are issued by ADFS. To do this,
you will first need to generate a private/public keypair:

openssl genrsa -out private.key 1024
openssl rsa -pubout -in private.key -out public.key -inform PEM -outform DER
openssl pkcs8 -topk8 -inform PER -outform DER -nocrypt -in private.key -out private.p8
openssl req -new -x509 -key private.key -out x509.pem -days 365

convert the X509 certificate to DER format
openssl x509 -outform der -in x509.pem -out certificate.crt

Configure CAS to reference the keypair, and configure the relying party trust settings
in ADFS to use the certificate.crt file for encryption.

Modifying ADFS Claims

The WsFed configuration optionally may allow you to manipulate claims coming from ADFS but
before they are inserted into the CAS user principal. For this to happen, you need
to put together an implementation of WsFederationAttributeMutator that changes and manipulates ADFS claims:

package org.apereo.cas.support.wsfederation;

@Configuration("myWsFedConfiguration")
@EnableConfigurationProperties(CasConfigurationProperties.class)
public class MyWsFedConfiguration {

 @Bean
 public WsFederationAttributeMutator wsfedAttributeMutator() {
 return new WsFederationAttributeMutatorImpl(...);
 }
}

public class WsFederationAttributeMutatorImpl implements WsFederationAttributeMutator {
 public void modifyAttributes(...) {
 ...
 }
}

Finally, ensure that the attributes sent from ADFS are available and mapped in
your attributeRepository configuration.

Handling CAS Logout

An optional step, the casLogoutView.html can be modified to place a link to ADFS’s logout page.

Logout

Per-Service Relying Party Id

In order to specify a relying party identifier per service definition, adjust your service
registry to match the following:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "^https://.+",
 "name" : "sample service",
 "id" : 100,
 "properties" : {
 "@class" : "java.util.HashMap",
 "wsfed.relyingPartyIdentifier" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceProperty",
 "values" : ["java.util.HashSet", ["custom-identifier"]]
 }
 }
}

Troubleshooting

Be aware of clock drift issues between CAS and the ADFS server. Validation failures of the response do show up in the logs, and the request is routed back to
ADFS again, causing redirect loops.

 Google reCAPTCHA

layout: default
title: CAS - Google reCAPTCHA

Google reCAPTCHA

reCAPTCHA is a Google service [https://developers.google.com/recaptcha] that protects your CAS deployment from spam and abuse.
It uses advanced risk analysis techniques to tell humans and bots apart.

Support is enabled by including the following module in the Overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-captcha</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Internet Explorer

Remember to disable Internet Explorer’s “Compatibility View” mode. reCAPTCHA does not render correctly when that mode is turned on.

 Attribute Value Filters

layout: default
title: CAS - Attribute Value Release Policies

Attribute Value Filters

While each policy defines what principal attributes may be allowed for a given service,
there are optional attribute filters that can be set per policy to further weed out attributes based on their values.

Chaining Filters

Attribute filters can be chained together so as to associate multiple filters with a single service definition.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 200,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllowedAttributeReleasePolicy",
 "attributeFilter" : {
 "@class" : "org.apereo.cas.services.support.RegisteredServiceChainingAttributeFilter",
 "policies": ["java.util.ArrayList",
 [
 {
 "@class" : "org.apereo.cas.services.support.RegisteredServiceRegexAttributeFilter",
 "pattern" : "^\\w{3}$",
 "order": 10
 },
 {
 "@class" : "..."
 }
]
]
 },
 "allowedAttributes" : ["java.util.ArrayList", ["uid", "groupMembership"]]
 }
}

Chained attribute filters are sorted given their order property first before execution.

Regex

The regex filter that is responsible to make sure only attributes whose value
matches a certain regex pattern are released.

Suppose that the following attributes are resolved:

| Name | Value
|—————————————–|—————————————————————-
| uid | jsmith
| groupMembership | std
| cn | JohnSmith

The following configuration for instance considers the initial list of uid,
groupMembership and then only allows and releases attributes whose value’s length
is 3 characters. Therefor, out of the above list, only groupMembership is released to the application.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 200,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllowedAttributeReleasePolicy",
 "attributeFilter" : {
 "@class" : "org.apereo.cas.services.support.RegisteredServiceRegexAttributeFilter",
 "pattern" : "^\\w{3}$"
 },
 "allowedAttributes" : ["java.util.ArrayList", ["uid", "groupMembership"]]
 }
}

Mapped Regex

The regex filter that is responsible to make sure only a selected set of attributes whose value matches a certain regex pattern are released. The filter selectively applies patterns to attributes mapped in the configuration. If an attribute is mapped, it is only allowed to be released if it matches the linked pattern. If an attribute is not mapped, it may optionally be excluded from the released set of attributes.

For example, the below example only allows release of memberOf if it contains a value that is 3 characters in length. If no values are found, the memberOf is excluded from the final released bundle.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 200,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllowedAttributeReleasePolicy",
 "attributeFilter" : {
 "@class": "org.apereo.cas.services.support.RegisteredServiceMappedRegexAttributeFilter",
 "patterns": {
 "memberOf": "^\\w{3}$"
 },
 "excludeUnmappedAttributes": false,
 "completeMatch": false,
 "order": 0
 },
 "allowedAttributes" : ["java.util.ArrayList", ["uid", "groupMembership"]]
 }
}

The following fields are supported by this filter:

| Name | Description
|———————-|————————————————————————–
| patterns | A map of attributes and their associated pattern tried against value(s).
| completeMatch | Indicates whether pattern-matching should execute over the entire value region.
| excludeUnmappedAttributes | Indicates whether unmapped attributes should be removed from the final bundle.

Reverse Mapped Regex

Identical to the above filter, except that the filter only allows a selected set of attributes whose value
does not match a certain regex pattern are released.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 200,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllowedAttributeReleasePolicy",
 "attributeFilter" : {
 "@class": "org.apereo.cas.services.support.RegisteredServiceReverseMappedRegexAttributeFilter",
 "patterns": {
 "memberOf": "^\\w{3}$"
 },
 "excludeUnmappedAttributes": false,
 "completeMatch": false,
 "order": 0
 },
 "allowedAttributes" : ["java.util.ArrayList", ["uid", "groupMembership"]]
 }
}

Groovy

Attribute value filtering may also be carried out using an inline or external Groovy script.
Scripts have access to the current resolved attributes via attributes and a logger.
The returned result of the script must be a Map<String, Object>.

Inlined Groovy

An inline groovy filter allows you to embed the script directly in the service definition.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 200,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllowedAttributeReleasePolicy",
 "attributeFilter" : {
 "@class" : "org.apereo.cas.services.support.RegisteredServiceScriptedAttributeFilter",
 "script" : "groovy { return attributes }"
 },
 "allowedAttributes" : ["java.util.ArrayList", ["uid", "groupMembership"]]
 }
}

External Groovy

An external groovy filter allows you to define the script in file located outside of the CAS web application.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 200,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllowedAttributeReleasePolicy",
 "attributeFilter" : {
 "@class" : "org.apereo.cas.services.support.RegisteredServiceScriptedAttributeFilter",
 "script" : "file:/etc/cas/filter-this.groovy}"
 },
 "allowedAttributes" : ["java.util.ArrayList", ["uid", "groupMembership"]]
 }
}

 Overview

layout: default
title: CAS - Sentry Monitoring Integration

Overview

Sentry [https://sentry.io] allows you to track logs and error in real time. It provides insight into production deployments and information to reproduce and fix crashes.

Configuration

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-sentry</artifactId>
 <version>${cas.version}</version>
</dependency>

The Logging configuration file must be adjusted to match the following:

<Configuration ... packages="...,org.apache.logging.log4j.core,com.getsentry.raven.log4j2">
 <Appenders>
 <Raven name="Sentry">
 <dsn><!-- provided by sentry --></dsn>
 <tags>tag1:value1,tag2:value2</tags>
 </Raven>
 ...
 </Appenders>
 ...
 <Loggers>
 ...
 <AsyncLogger name="org.apereo" level="info" additivity="false" includeLocation="true">
 <AppenderRef ref="casConsole"/>
 <AppenderRef ref="casFile"/>
 <AppenderRef ref="Sentry"/>
 </AsyncLogger>
 ...
 </Loggers>
...
</Configuration>

The Sentry appender can be mapped to any of the available logger elements defined.

 Attribute Release

layout: default
title: CAS - Attribute Release

Attribute Release

Attributes are returned to scoped services and pass through a two-step process:

	Attribute Resolution: Done at the time of establishing the principal, usually via PrincipalResolver components where attributes are resolved from various sources.

	Attribute Release: Adopters must explicitly configure attribute release for services in order for the resolved attributes to be released to a service in the validation response.

Service ManagementAttribute release may also be configured via the
Service Management tool.

Principal-Id Attribute

Decide how CAS-protected applications should receive the authenticated userid.
See this guide for more info.

Attribute Release Policy

Decide how CAS should release attributes to applications.
See this guide for more info.

Attribute Consent

Provide the ability to enforce user consent to attribute release.
See this guide for more info.

Caching Attributes

Control how resolved attributes by CAS should be cached.
See this guide for more info.

Encrypting Attributes

CAS by default supports the ability to encrypt certain attributes, such as the proxy-granting
ticket and the credential conditionally. The default implementation of the attribute encoder
will use a per-service key-pair to encrypt sensitive attributes.
See this guide to learn more.

 Overview

layout: default
title: CAS - Shibboleth Integration

Overview

CAS can be integrated with the Shibboleth federated SSO platform [http://shibboleth.net/] by a couple
different strategies.
It is possible to designate CAS to serve as the authentication provider for the Shibboleth IdP.
With such a setup, when user
is routed to the IdP, the following may take place:

	If the user has already authenticated to CAS and has a valid CAS SSO session, the IdP will transparently
perform the requested action, e.g. attribute release.

	If the user does not have a valid CAS SSO session, the user will be redirected to CAS and must
authenticate before the IdP proceeds with the requested action.

SSO for Shibboleth IdP (External)

This is a Shibboleth IdP external authentication plugin that delegates
the authentication to CAS. The advantage of using
this component over the plain RemoteUser solution is the ability to
utilize a full range of native CAS protocol features such as renew and gateway.

The plugin is available for both
Shibboleth Identity Provider v2 [https://github.com/Unicon/shib-cas-authn2]
and v3 [https://github.com/Unicon/shib-cas-authn3].

Relying Party EntityId

The authentication plugin is able to pass the relying party’s entity ID over
to the CAS server upon authentication requests.
The entity ID is passed in form of a url parameter to the CAS server as such:

https://sso.example.org/cas/login?service=<authentication-plugin-url>&entityId=<relying-party-entity-id>

You can also take advantage of the entityId parameter and treat it as a normal CAS service definition,
so it can be used for multifactor authentication and authorization.

See this guide for more info.

Displaying SAML MDUI

The CAS server is able to recognize the entityId parameter and display SAML MDUI on the login page,
that is provided by the metadata associated with the relying party.
This means that CAS will also need to know
about metadata sources that the identity provider uses.

Configuration

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-saml-mdui</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

A sample screenshot of the above configuration in action:

[image: capture]

 Google Analytics

layout: default
title: CAS - Google Analytics

Google Analytics

Google Analytics can be used to deliver useful statistics. create custom dimensions and metrics to gain
insight into CAS and user traffic.

To see the relevant list of CAS properties, please review this guide.

 ClearPass: Credential Caching and Replay

layout: default
title: CAS - ClearPass

ClearPass: Credential Caching and Replay

To enable single sign-on into some legacy applications it may be necessary to provide them with the actual password.
While such approach inevitably increases security risk, at times this may be a necessary evil in order to integrate
applications with CAS.

Usage Warning!ClearPass is turned off by default.
No applications will be able to obtain the user credentials unless ClearPass is explicitly turned on by the
below configuration. Think VERY CAREFULLY before turning on this feature, as it MUST be
the last resort in getting an integration to work...maybe not even then.

Overview

CAS is able to issue the credential password directly in the CAS validation response. This previously was handled
via a proxy authentication sequence and obtaining a proxy-granting ticket for the ClearPass service and was necessary
in order to establish trust between the client application and the CAS server. This document describes the configuration
that can be applied in order to receive the credential password as an attribute in the CAS validation response.

In order to successfully establish trust between the
CAS server and the application, private/public key pairs are generated by the client application and then
the public key distributed and configured inside CAS. CAS will use the public key to encrypt the credential
password and will issue a new attribute <credential> in the validation response, only if the service is authorized to receive it.

Note that the return of the credential is only carried out by the CAS validation response, provided the client
application issues a request to the /p3/serviceValidate endpoint (or /p3/proxyValidate). Other means of
returning attributes to CAS, such as SAML1 will not support the additional returning of this value.

Also note that CAS by default attempts to encrypt the cached credential in memory via its own pre-generated keys
for signing and encryption. When the attribute is to be released to the application, CAS will internally decode
the credential first and then will attempt to encrypt it again this time using the service’s public key credentials.
This behavior can be controlled via settings.

ClearPass via Proxying!CAS no longer supports retrieving
the credential via the proxying mechanism. Applications that intend to obtain the credential
need to be updated to account for the following approach described here.

Cache Credential

Enable the caching and capturing of the credential in CAS properties.
To see the relevant list of CAS properties, please review this guide.

Create Keys

The keypair must be generated by the application itself that wishes to obtain the user credential.
The public key is shared with CAS. The private key is used by the application to decrypt the credential.

openssl genrsa -out private.key 1024
openssl rsa -pubout -in private.key -out public.key -inform PEM -outform DER
openssl pkcs8 -topk8 -inform PER -outform DER -nocrypt -in private.key -out private.p8

Register Public Key

Once you have received the public key from the client application owner, it must be first
registered inside the CAS server’s service registry. The service that holds the public key above must also
be authorized to receive the password as an attribute for the given attribute release policy of choice.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "^https://.+",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllowedAttributeReleasePolicy",
 "authorizedToReleaseCredentialPassword" : true
 },
 "publicKey" : {
 "@class" : "org.apereo.cas.services.RegisteredServicePublicKeyImpl",
 "location" : "classpath:public.key",
 "algorithm" : "RSA"
 }
}

Decrypt the Password

Once the client application has received the credential attribute in the CAS validation response, it can decrypt
it via its own private key. Since the attribute is base64 encoded by default, it needs to be decoded first before
decryption can occur. Here’s a sample code snippet:

final Map<?, ?> attributes = ...
final String encodedPsw = (String) attributes.get("credential");

/* Use the private.key file generated above. */
final PrivateKey privateKey = ...
final Cipher cipher = Cipher.getInstance(privateKey.getAlgorithm());
final byte[] cred64 = decodeBase64(encodedPsw);
cipher.init(Cipher.DECRYPT_MODE, privateKey);
final byte[] cipherData = cipher.doFinal(cred64);
return new String(cipherData);

 Attribute Consent

layout: default
title: CAS - Attribute Release Consent

Attribute Consent

CAS provides the ability to enforce user consent upon attribute release.

Usage Warning!This feature, currently in development, is very experimental and incomplete at this point.

Support is enabled by including the following module in the Overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-consent-webflow</artifactId>
 <version>${cas.version}</version>
</dependency>

Storage

User consent decisions may be stored and remembered using one of the following options.

JDBC

Support is enabled by including the following module in the Overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-consent-jdbc</artifactId>
 <version>${cas.version}</version>
</dependency>

 Principal-Id Attribute

layout: default
title: CAS - Releasing Principal Id

Principal-Id Attribute

Registered CAS applications are given the ability to allow for configuration of a
username attribute provider, which controls what should be the designated user identifier
that is returned to the application. The user identifier by default is the authenticated CAS principal id, yet it optionally may be based off of an existing attribute that is available and resolved for the principal already. More practiaclly, this component determines what should be placed inside the <cas:user> tag in the final CAS validation payload that is returned to the application.

Principal Id As AttributeYou may also return the authenticated principal id as an extra attribute in the final CAS payload. See this guide to learn more.

A number of providers are able to perform canonicalization on the final user id returned to transform it
into uppercase/lowercase. This is noted by the canonicalizationMode whose allowed values are UPPER, LOWER or NONE.

Default

The default configuration which need not explicitly be defined, simply returns the resolved
principal id as the username for this service.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 100,
 "description" : "sample",
 "usernameAttributeProvider" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceUsernameProvider",
 "canonicalizationMode" : "NONE"
 }
}

If you do not need to adjust the behavior of this provider (i.e. to modify the canonicalization mode),
then you can leave out this block entirely.

Encrypted

Most if not all providers are able to encrypt the resolved username, assuming the service definition is given a public key.

The key can be generated via the following commands:

openssl genrsa -out private.key 1024
openssl rsa -pubout -in private.key -out public.key -inform PEM -outform DER
openssl pkcs8 -topk8 -inform PER -outform DER -nocrypt -in private.key -out private.p8

The public key is then configured for a regex service definition in CAS:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 100,
 "description" : "sample",
 "usernameAttributeProvider" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceUsernameProvider",
 "encryptUsername" : "true"
 },
 "publicKey" : {
 "@class" : "org.apereo.cas.services.RegisteredServicePublicKeyImpl",
 "location" : "classpath:public.key",
 "algorithm" : "RSA"
 }
}

The application can then proceed to decrypt the username using its own private key.
The following sample code demonstrates how that might be done in Java:

final String casUsername = ...
final PrivateKey privateKey = ...
final Cipher cipher = Cipher.getInstance(privateKey.getAlgorithm());
final byte[] cred64 = decodeBase64(encodedPsw);
cipher.init(Cipher.DECRYPT_MODE, privateKey);
final byte[] cipherData = cipher.doFinal(casUsername);
return new String(cipherData);

Attribute

Returns an attribute that is already resolved for the principal as the username for this service. If the attribute
is not available, the default principal id will be used.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 600,
 "description" : "sample",
 "usernameAttributeProvider" : {
 "@class" : "org.apereo.cas.services.PrincipalAttributeRegisteredServiceUsernameProvider",
 "usernameAttribute" : "cn",
 "canonicalizationMode" : "UPPER"
 }
}

Groovy

Returns a username attribute value as the final result of a groovy script’s execution.
Groovy scripts whether inlined or external will receive and have access to the following variable bindings:

	id: The existing identifier for the authenticated principal.

	attributes: A map of attributes currently resolved for the principal.

	logger: A logger object, able to provide logger.info() operations, etc.

Inline

Embed the groovy script directly inside the service configuration.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 600,
 "description" : "sample",
 "usernameAttributeProvider" : {
 "@class" : "org.apereo.cas.services.GroovyRegisteredServiceUsernameProvider",
 "groovyScript" : "groovy { return attributes['uid'] + '123456789' }",
 "canonicalizationMode" : "UPPER"
 }
}

External

Reference the groovy script as an external resource outside the service configuration.
The script must return a single String value.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 600,
 "description" : "sample",
 "usernameAttributeProvider" : {
 "@class" : "org.apereo.cas.services.GroovyRegisteredServiceUsernameProvider",
 "groovyScript" : "file:/etc/cas/sampleService.groovy",
 "canonicalizationMode" : "UPPER"
 }
}

Anonymous

Provides an opaque identifier for the username. The opaque identifier by default conforms to the requirements
of the eduPersonTargetedID [http://www.incommon.org/federation/attributesummary.html#eduPersonTargetedID] attribute.
The generated id may be based off of an existing principal attribute. If left unspecified or attribute not found, the authenticated principal id is used.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 500,
 "description" : "sample",
 "usernameAttributeProvider" : {
 "@class" : "org.apereo.cas.services.AnonymousRegisteredServiceUsernameAttributeProvider",
 "persistentIdGenerator" : {
 "@class" : "org.apereo.cas.authentication.principal.ShibbolethCompatiblePersistentIdGenerator",
 "salt" : "aGVsbG93b3JsZA==",
 "attribute": ""
 }
 }
}

 SAML SP Integrations

layout: default
title: CAS - SAML SP Integrations

SAML SP Integrations

CAS provides built-in integration support for a number of SAML2 service providers. Configuring these service providers
is simply about declaring the relevant properties in the CAS configuration as well as the configuration module below. Each integration,
when configured appropriately, will register the service provider with the CAS service registry as a SAML SP and will follow
a recipe (that is documented by the SP publicly) to configure attribute release policies, name ids and entity IDs. If you need to,
you can review the registration record inside the CAS service registry to adjust options.

NOTE: In the event that special attributes and/or name ids are required for the integration, you are required
to ensure all such attributes are properly resolved and are available to the CAS principal.

RememberSAML2 service provider integrations listed here simply attempt to automate CAS configuration based on known and documented integration guidelines and recipes provided by the service provider owned by the vendor. These recipes can change and break CAS over time and needless to say, they need to be properly and thoroughly tested as the project itself does not have a subscription to each application to test for correctness. YMMV. If you find an issue with an automated integration strategy here, please speak up.

Support is enabled by including the following module in the Overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-saml-sp-integrations</artifactId>
 <version>${cas.version}</version>
</dependency>

The following SAML SP integrations, as samples, are provided by CAS:

 Attribute Resolution

layout: default
title: CAS - Attribute Resolution

Attribute Resolution

Attribute resolution strategies are controlled by
the Person Directory project [https://github.com/apereo/person-directory].
The Person Directory dependency is automatically bundled with the CAS server. Therefore,
declaring an additional dependency will not be required.
This Person Directory project supports both LDAP and JDBC attribute resolution,
caching, attribute aggregation from multiple attribute sources, etc.

Default Caching PolicyBy default,
attributes are cached to the length of the SSO session.
This means that while the underlying component provided by Person Directory may have
a different caching model, attributes by default and from
a CAS perspective will not be refreshed and retrieved again on subsequent requests
as long as the SSO session exists.

Person Directory

A framework for resolving persons and attributes from a variety of underlying sources.
It consists of a collection of components that retrieve, cache, resolve, aggregate,
merge person attributes from JDBC, LDAP and more.

To see the relevant list of CAS properties that deal with resolving principals, please review this guide.

Attribute sources are defined and configured to describe the global set of attributes to be fetched
for each authenticated principal. That global set of attributes is then filtered by the
service manager according to service-specific attribute release rules.

Principal ResolutionNote that in most if not all cases,
CAS authentication is able to retrieve and resolve attributes from the authentication source, which would
eliminate the need for configuring a separate resolver specially if both the authentication and the attribute source are the same.
Using separate resolvers should only be required when sources are different, or when there is a need to tackle more advanced attribute
resolution use cases such as cascading, merging, etc. See this guide for more info.

The goal of the resolver is to construct a final identifiable authenticated principal for CAS which carries a number of attributes inside it.
The behavior of the person-directory resolver is such that it attempts to locate the principal id, which in most cases is the same thing as the credential
id provided during authentication or it could be noted by a custom attribute. Then the resolver starts to construct attributes from attribute repositories defined. If it realizes that a custom attribute is used to determine the principal id AND the same attribute is also set to be collected into the final set of attributes, it will then remove that attribute from the final collection.

Note that by default, CAS auto-creates attribute repository sources that are appropriate for LDAP, JDBC, etc.
If you need something more, you will need to resort to more elaborate measures of defining the bean configuration.

To see the relevant list of CAS properties, please review this guide.
More about the Person Directory and its configurable sources can be found here [https://github.com/apereo/person-directory].

JDBC

CAS does allow for attributes to be retrieved from a variety of SQL databases.
To learn how to configure database drivers, please see this guide.

JDBC attribute sources can be defined based on the following mechanics:

Single Row

Designed to work against a table where there is a mapping of one row to one user.
An example of this table format would be:

| uid | first_name | last_name | email
|———-|————|———–|———————-
| jsmith | John | Smith | jsmith@example.org

Multi Row

Designed to work against a table where there is a mapping of one row to one user.
An example of this table format would be:

| uid | attr_name | attr_value
|———-|————–|—————————–
| jsmith | first_name | John
| jsmith | last_name | Smith
| jsmith | email | jsmith@example.org

You will need to define column mappings
in your configuration to map the attr_name column to the attr_value column

Examples

Suppose CAS is configured to authenticate against Active Directory. The account whose details are defined below
authenticates via sAMAccountName.

| Attribute | Value
|——————— |———————–
| sAMAccountName | johnsmith
| cn | John Smith

Example #1

If the resolver is configured to use sAMAccoutName as the attribute for the principal id, then when authentication is complete the resolver attempts
to construct attributes from attribute repository sources, it sees sAMAccoutName as the attribute and sees the principal id is to
be created by sAMAccoutName. So it would remove the sAMAccoutName from the attributes.
The final result is is a principal whose id is johnsmith who has a cn attribute of John Smith.

Example #2

If the resolver is configured to use cn as the attribute for the principal id, then when authentication is complete the resolver attempts to
construct attributes from attribute repository sources. It then sees sAMAccoutName as the attribute and sees the principal id is to be created by cn.
So it would remove the cn from the attributes. The final result is is a principal whose id is John Smith
who has a sAMAccountName attribute of johnsmith.

Shibboleth

Uses a Shibboleth IdP attribute-resolver.xml style file to define and populate person attributes [https://wiki.shibboleth.net/confluence/display/IDP30/AttributeResolverConfiguration].

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-shibboleth-attributes</artifactId>
 <version>${cas.version}</version>
</dependency>

You may also need to declare the following Maven repository in your
CAS overlay to be able to resolve dependencies:

<repositories>
 ...
 <repository>
 <id>shibboleth-releases</id>
 <url>https://build.shibboleth.net/nexus/content/repositories/releases</url>
 </repository>
 ...
</repositories>

To see the relevant list of CAS properties, please review this guide.

Connector CompatibilityNote that at this time given LDAP library compatibilities between CAS and Shibboleth,
the LDAP data connector is not quite supported by CAS.

An example attribue-resolver.xml file could be:

<?xml version="1.0" encoding="UTF-8"?>
<resolver:AttributeResolver
 xmlns:resolver="urn:mace:shibboleth:2.0:resolver"
 xmlns:pc="urn:mace:shibboleth:2.0:resolver:pc"
 xmlns:ad="urn:mace:shibboleth:2.0:resolver:ad"
 xmlns:dc="urn:mace:shibboleth:2.0:resolver:dc"
 xmlns:enc="urn:mace:shibboleth:2.0:attribute:encoder"
 xmlns:sec="urn:mace:shibboleth:2.0:security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:mace:shibboleth:2.0:resolver http://shibboleth.net/schema/idp/shibboleth-attribute-resolver.xsd
 urn:mace:shibboleth:2.0:resolver:pc http://shibboleth.net/schema/idp/shibboleth-attribute-resolver-pc.xsd
 urn:mace:shibboleth:2.0:resolver:ad http://shibboleth.net/schema/idp/shibboleth-attribute-resolver-ad.xsd
 urn:mace:shibboleth:2.0:resolver:dc http://shibboleth.net/schema/idp/shibboleth-attribute-resolver-dc.xsd
 urn:mace:shibboleth:2.0:attribute:encoder http://shibboleth.net/schema/idp/shibboleth-attribute-encoder.xsd
 urn:mace:shibboleth:2.0:security http://shibboleth.net/schema/idp/shibboleth-security.xsd">

 <resolver:AttributeDefinition id="eduPersonPrincipalName" xsi:type="ad:Scoped" scope="example.org" sourceAttributeID="uid">
 <resolver:Dependency ref="uid" />
 </resolver:AttributeDefinition>
 <resolver:AttributeDefinition id="uid" xsi:type="ad:PrincipalName" />
 <resolver:AttributeDefinition id="eduPersonScopedAffiliation" xsi:type="ad:Scoped" scope="example.org" sourceAttributeID="affiliation">
 <resolver:Dependency ref="staticAttributes" />
 </resolver:AttributeDefinition>
 <resolver:DataConnector id="staticAttributes" xsi:type="dc:Static">
 <dc:Attribute id="affiliation">
 <dc:Value>member</dc:Value>
 </dc:Attribute>
 </resolver:DataConnector>
</resolver:AttributeResolver>

 Delegate Authentication

layout: default
title: CAS - Delegate Authentication

Delegate Authentication

CAS can act as a client using the pac4j security engine [https://github.com/pac4j/pac4j] and delegate the authentication to:

	A CAS server

	A SAML identity provider

	An OAuth2 provider: Facebook, Twitter, Google, LinkedIn, Yahoo and several other providers.

	An OpenID provider

	An OpenID Connect identity provider

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-pac4j-webflow</artifactId>
 <version>${cas.version}</version>
</dependency>

RememberDelegated authentication always assumes the originator of the authentication request is a CAS client; an
application that understands CAS protocol and can validate a service ticket. Clients that use other protocols (SAML2, OAuth, etc) with CAS cannot today take advantage of delegated authentication scenarios though support for this behavior may be worked out in future releases.

Register Providers

An identity provider is a server which can authenticate users (like Google, Yahoo...) instead of a CAS server.
If you want to delegate the CAS authentication to Twitter for example, you have to add an
OAuth client for the Twitter provider, which will be done automatically for you once provider settings are taught to CAS.

To see the relevant list of CAS properties, please review this guide.

Notice that for each OAuth provider, the CAS server is considered as an OAuth client and therefore should be declared as
an OAuth client at the OAuth provider. After the declaration, a key and a secret is given by the OAuth provider which has
to be defined in the CAS configuration as well.

User Interface

All available clients are automatically displayed on the login page as clickable buttons.
CAS does allow options for auto-redirection of the authentication flow to a provider,
if only there is a single provider available and configured.

Authenticated User Id

After a successful delegated authentication, a user is created inside the CAS server with a specific identifier:
this one can be created only from the technical identifier received from the external identity provider (like 1234)
or as a “typed identifier” (like FacebookProfile#1234), which is the default.

To see the relevant list of CAS properties, please review this guide.

Returned Payload

Once you have configured (see information above) your CAS server to act as an OAuth,
CAS, OpenID (Connect) or SAML client, users will be able to authenticate at a OAuth/CAS/OpenID/SAML
provider (like Facebook) instead of authenticating directly inside the CAS server.

In the CAS server, after this kind of delegated authentication, users have specific authentication data.

The Authentication object has:

	The attribute AuthenticationManager.AUTHENTICATION_METHOD_ATTRIBUTE
set to org.apereo.cas.support.pac4j.authentication.handler.support.ClientAuthenticationHandler

	The attribute clientName set to the type of the provider used during authentication process.

The Principal object of the Authentication object has:

	An identifier which is the profile type + # + the identifier of the user for this provider (i.e FacebookProfile#0000000001)

	Attributes populated by the data retrieved from the provider (first name, last name, birthdate...)

Profile Attributes

In CAS-protected applications, through service ticket validation, user information
are pushed to the CAS client and therefore to the application itself.

The identifier of the user is always pushed to the CAS client. For user attributes, it involves both the configuration
at the server and the way of validating service tickets.

On CAS server side, to push attributes to the CAS client, it should be configured in the expected service:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 100,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllowedAttributeReleasePolicy",
 "allowedAttributes" : ["java.util.ArrayList", ["name", "first_name", "middle_name"]]
 }
}

Troubleshooting

To enable additional logging, configure the log4j configuration file to add the following
levels:

...
<AsyncLogger name="org.pac4j" level="debug" additivity="false">
 <AppenderRef ref="console"/>
 <AppenderRef ref="file"/>
</AsyncLogger>
...

 Attribute Release Policies

layout: default
title: CAS - Attribute Release Policies

Attribute Release Policies

The attribute release policy decides how attributes are selected and provided to a given application in the final CAS response. Additionally, each policy has the ability to apply an optional filter to weed out their attributets based on their values.

The following settings are shared by all attribute release policies:

| Name | Value
|——————————————|—————————————————————-
| authorizedToReleaseCredentialPassword | Boolean to define whether the service is authorized to release the credential as an attribute.
| authorizedToReleaseProxyGrantingTicket | Boolean to define whether the service is authorized to release the proxy-granting ticket id as an attribute.
| excludeDefaultAttributes | Boolean to define whether this policy should exclude the default global bundle of attributes for release.
| principalIdAttribute | An attribute name of your own choosing that will be stuffed into the final bundle of attributes, carrying the CAS authenticated principal identifier. By default, the principal id is NOT released as an attribute.

Usage Warning!Think VERY CAREFULLY before turning on the above settings. Blindly authorizing an application to receive a proxy-granting ticket or the user credential
may produce an opportunity for security leaks and attacks. Make sure you actually need to enable those features and that you understand the why. Avoid where and when you can, specially when it comes to sharing the user credential.

CAS makes a distinction between attributes that convey metadata about the authentication event versus
those that contain personally identifiable data for the authenticated principal.

Authentication Attributes

During the authentication process, a number of attributes get captured and collected by CAS
to describe metadata and additional properties about the nature of the authentication event itself.
These typically include attributes that are documented and classified by the underlying protocol
or attributes that are specific to CAS which may describe the type of credentials used, successfully-executed
authentication handlers, date/time of the authentication, etc.

Releasing authentication attributes to service providers and applications can be
controlled to some extent. To learn more and see the relevant list of CAS properties,
please review this guide.

Principal Attributes

Principal attributes typically convey personally identifiable data about the authenticated user,
such as address, last name, etc. Release policies are available in CAS and documented below
to explicitly control the collection
of attributes that may be authorized for release to a given application.

Default

CAS provides the ability to release a bundle of principal attributes to all services by default. This bundle is not defined on a per-service
basis and is always combined with attributes produced by the specific release policy of the service, such that for instance, you can devise
rules to always release givenName and cn to every application, and additionally allow other specific principal attributes for only some
applications per their attribute release policy.

To see the relevant list of CAS properties, please review this guide.

Return All

Return all resolved principal attributes to the service.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 100,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllAttributeReleasePolicy"
 }
}

Deny All

Never ever return principal attributes to applications. Note that this policy
also skips and refuses to release default attributes, if any.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 100,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.DenyAllAttributeReleasePolicy"
 }
}

Return Allowed

Only return the principal attributes that are explicitly allowed by the configuration.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 100,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllowedAttributeReleasePolicy",
 "allowedAttributes" : ["java.util.ArrayList", ["cn", "mail", "sn"]]
 }
}

Return Mapped

Similar to above, this policy will return a collection of allowed principal attributes for the
service, but also allows those principal attributes to be mapped and “renamed” at the more granular service level.

For example, the following configuration will recognize the resolved
attributes eduPersonAffiliation and groupMembership and will then
release affiliation and group to the web application configured.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 300,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnMappedAttributeReleasePolicy",
 "allowedAttributes" : {
 "@class" : "java.util.TreeMap",
 "eduPersonAffiliation" : "affiliation",
 "groupMembership" : "group"
 }
 }
}

Inline Groovy Attributes

Principal attributes that are mapped may produce their values from an inline groovy script. As an example, if you currently
have resolved a uid attribute with a value of piper, you could then consider the following:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 300,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnMappedAttributeReleasePolicy",
 "allowedAttributes" : {
 "@class" : "java.util.TreeMap",
 "uid" : "groovy { return attributes['uid'] + ' is great' }"
 }
 }
}

In the above snippet, the value of the uid attribute name is mapped to the result of the inline groovy script.
Inline scripts always begin with the syntax groovy {...} and are passed the current collection of resolved
attributes as an attributes binding variable. The result of the script can be a single/collection of value(s).

The above configuration will produce a uid attribute for the application whose value is a concatenation of
the original value of uid plus the words ” is great”, so the final result would be “piper is great”.

File-based Groovy Attributes

Identical to inline groovy attribute definitions, except the groovy script can also be externalized to a .groovy file:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 300,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnMappedAttributeReleasePolicy",
 "allowedAttributes" : {
 "@class" : "java.util.TreeMap",
 "uid" : "file:/etc/cas/uid-for-sample-service.groovy"
 }
 }
}

Groovy Script

Let an external Groovy script decide how principal attributes should be released.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 300,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.GroovyScriptAttributeReleasePolicy",
 "groovyScript" : "classpath:/script.groovy"
 }
}

The script itself may be designed as:

import java.util.*

class SampleGroovyPersonAttributeDao {
 def Map<String, List<Object>> run(final Object... args) {
 def currentAttributes = args[0]
 def logger = args[1]

 logger.debug("Current attributes received are {}", currentAttributes)
 return[username:["something"], likes:["cheese", "food"], id:[1234,2,3,4,5], another:"attribute"]
 }
}

Javascript or Python Script

Let an external javascript or python script decide how principal attributes should be released.
This approach takes advantage of scripting functionality built into the Java platform.
While Javascript and Groovy should be natively supported by CAS, python scripts may need
to massage the CAS configuration to include the Python modules [http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22jython-standalone%22].

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 300,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ScriptedRegisteredServiceAttributeReleasePolicy",
 "scriptFile" : "classpath:/script.[py|js|groovy]"
 }
}

Similar to the above option, the scripts need to design a run function
that receives a list of parameters. The collection of current attributes in process
as well as a logger object are passed to this function. The result must produce a
map whose keys are attributes names and whose values are a list of attribute values.

You are also allowed to stuff inlined groovy scripts into the scriptFile attribute. The script
has access to the collection of resolved attributes as well as a logger object.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 300,
 "description" : "sample",
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ScriptedRegisteredServiceAttributeReleasePolicy",
 "scriptFile" : "groovy { return attributes }"
 }
}

Chaining Policies

Attribute release policies can be chained together to process multiple rules.
The order of policy invocation is the same as the definition order defined for the service itself.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 300,
 "attributeReleasePolicy": {
 "@class": "org.apereo.cas.services.ChainingAttributeReleasePolicy",
 "policies": ["java.util.ArrayList",
 [
 {"@class": "..."},
 {"@class": "..."}
]
]
 }
}

Attribute Value Filters

While each policy defines what principal attributes may be allowed for a given service,
there are optional attribute filters that can be set per policy to further weed out attributes based on their values.

See this guide to learn more.

 Overview

layout: default
title: CAS - Google Apps Integration

Overview

Google Apps for Education (or any of the Google Apps) utilizes SAML 2.0 to provide an
integration point for external authentication services.

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-saml-googleapps</artifactId>
 <version>${cas.version}</version>
</dependency>

Generate Public/Private Keys

The first step is to generate DSA/RSA public and private keys. These are used to sign and read the Assertions.
After keys are created, the public key needs to be registered with Google.

The keys will also need to be available to the CAS application (but not publicly available over the Internet)
via the classpath though any location accessible by the user running the web server
instance and not served publicly to the Internet is acceptable. Thus, inside src/main/resources is
nice because it is scoped to the web application but not normally served. /etc/cas/
is also fine as well and protects the key from being overwritten on deploy of a new CAS webapp version.

openssl genrsa -out private.key 1024
openssl rsa -pubout -in private.key -out public.key -inform PEM -outform DER
openssl pkcs8 -topk8 -inform PER -outform DER -nocrypt -in private.key -out private.p8
openssl req -new -x509 -key private.key -out x509.pem -days 365

The x509.pem file should be uploaded into Google Apps under Security/SSO.

To see the relevant list of CAS properties, please review this guide.

Register Google Apps

Ensure that Google Apps is registered in your service registry.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "https://www.google.com/a/YourGoogleDomain/acs",
 "name" : "googleApps",
 "id" : 1000,
 "evaluationOrder" : 10
}

Configure Username Attribute

As an optional step, you can configure an alternate username to be send to Google in the SAML reply. This alternate user name
can be specified in the CAS service registry via username attribute providers
for the registered Google Apps service.

Configure Google

You’ll need to provide Google with the URL for your SAML-based SSO service, as well as the URL your users will
be redirected to when they log out of a hosted Google application.
Use the following URLs when you are configuring for Google Apps:

	Sign-in page URL: https://sso.school.edu/cas/login

	Sign-out page URL: https://sso.school.edu/cas/logout

	Change password URL: https://mgmt.password.edu/

Test

Attempt to access a Google-hosted application, such as Google Calendar
with the url: https://calendar.google.com/a/YourGoogleDomain

 Attribute Release Caching

layout: default
title: CAS - Attribute Release Caching

Attribute Release Caching

By default, resolved attributes are cached to the
length of the SSO session. If there are any attribute value changes since the
commencement of SSO session, the changes are not reflected and returned back
to the service upon release time.

Default

The default relationship between a CAS Principal and the underlying attribute
repository source, such that principal attributes are kept as they are without
any additional processes to evaluate and update them. This need not be configured explicitly.

Caching

The relationship between a CAS Principal and the underlying attribute
repository source, that describes how and at what length the CAS Principal attributes should
be cached. Upon attribute release time, this component is consulted to ensure that appropriate
attribute values are released to the scoped service, per the cache expiration policy.
If the expiration policy has passed, the underlying attribute repository source will be consulted
to figure out the available set of attributes.

This component also has the ability to resolve conflicts between existing principal attributes and
those that are retrieved from repository source via a mergingStrategy property.
This is useful if you want to preserve the collection of attributes that are already
available to the principal that were retrieved from a different place during the authentication event, etc.

Caching Upon ReleaseNote
that the policy is only consulted at release time, upon a service ticket validation event. If there are
any custom webflows and such that wish to rely on the resolved Principal AND also wish to
receive an updated set of attributes, those components must consult the underlying source directory
without relying on the Principal.

Sample configuration follows:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 100,
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllowedAttributeReleasePolicy",
 "principalAttributesRepository" : {
 "@class" : "org.apereo.cas.authentication.principal.cache.CachingPrincipalAttributesRepository",
 "duration" : {
 "@class" : "javax.cache.expiry.Duration",
 "timeUnit" : ["java.util.concurrent.TimeUnit", "HOURS"],
 "expiration" : 2
 },
 "mergingStrategy" : "NONE"
 }
 }
}

Merging Strategies

By default, no merging strategy takes place, which means the principal attributes are always ignored and
attributes from the source are always returned. But any of the following merging strategies may be a suitable option:

Merge

Attributes with the same name are merged into multi-valued lists.

For example:

	Principal has attributes {email=eric.dalquist@example.com, phone=123-456-7890}

	Source has attributes {phone=[111-222-3333, 000-999-8888], office=3233}

	The resulting merged would have attributes: {email=eric.dalquist@example.com, phone=[123-456-7890, 111-222-3333, 000-999-8888], office=3233}

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 100,
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllowedAttributeReleasePolicy",
 "principalAttributesRepository" : {
 "@class" : "org.apereo.cas.authentication.principal.cache.CachingPrincipalAttributesRepository",
 "duration" : {
 "@class" : "javax.cache.expiry.Duration",
 "timeUnit" : ["java.util.concurrent.TimeUnit", "HOURS"],
 "expiration" : 2
 },
 "mergingStrategy" : "MULTIVALUED"
 }
 }
}

Add

Attributes are merged such that attributes from the source that don’t already exist for the principal are produced.

For example:

	Principal has attributes {email=eric.dalquist@example.com, phone=123-456-7890}

	Source has attributes {phone=[111-222-3333, 000-999-8888], office=3233}

	The resulting merged would have attributes: {email=eric.dalquist@example.com, phone=123-456-7890, office=3233}

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 100,
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllowedAttributeReleasePolicy",
 "principalAttributesRepository" : {
 "@class" : "org.apereo.cas.authentication.principal.cache.CachingPrincipalAttributesRepository",
 "duration" : {
 "@class" : "javax.cache.expiry.Duration",
 "timeUnit" : ["java.util.concurrent.TimeUnit", "HOURS"],
 "expiration" : 2
 },
 "mergingStrategy" : "ADD"
 }
 }
}

Replace

Attributes are merged such that attributes from the source always replace principal attributes.

For example:

	Principal has attributes {email=eric.dalquist@example.com, phone=123-456-7890}

	Source has attributes {phone=[111-222-3333, 000-999-8888], office=3233}

	The resulting merged would have attributes: {email=eric.dalquist@example.com, phone=[111-222-3333, 000-999-8888], office=3233}

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "sample",
 "name" : "sample",
 "id" : 100,
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllowedAttributeReleasePolicy",
 "principalAttributesRepository" : {
 "@class" : "org.apereo.cas.authentication.principal.cache.CachingPrincipalAttributesRepository",
 "duration" : {
 "@class" : "javax.cache.expiry.Duration",
 "timeUnit" : ["java.util.concurrent.TimeUnit", "HOURS"],
 "expiration" : 2
 },
 "mergingStrategy" : "REPLACE"
 }
 }
}

 Overview

layout: default
title: CAS - SCIM Provisioning Integration

Overview

The SCIM standard [http://www.simplecloud.info/] is created to simplify user management and provisioning in the cloud by defining a schema for representing users and groups and a REST API for all the necessary CRUD operations. SCIM integrations with CAS allow deployers to auto-provision the authenticated CAS principal to a SCIM server/target with additional support to map principal attributes into the appropriate claims and properties of the user resource.

SCIM versions 1.1 and 2 are both supported, thanks to the SDK provided by UnboundID [https://github.com/UnboundID].

Typical use case for enabling SCIM is to synchronize and provision user accounts, just in time, to services and applications that are
integrated with CAS for single sign-on. In cases where the application also has its own account store, a mapping of user accounts between
the CAS canonical account store (LDAP, JDBC, etc) and the application may be required. To accommodate this issue, CAS may be allowed to
provision the authenticated principal via SCIM to a provisioning/identity/entity engine which would then dynamically
synchronize user profiles to target systems.

Configuration

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-scim</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

 Overview

layout: default
title: CAS - CAS Clients

Overview

A CAS client is also a software package that can be integrated with various software platforms and applications in order to
communicate with the CAS server using or or more supported protocols. CAS clients supporting a number of software platforms and products have been developed.

Official Clients

	.NET CAS Client [https://github.com/apereo/dotnet-cas-client]

	Java CAS Client [https://github.com/apereo/java-cas-client]

	PHP CAS Client [https://github.com/Jasig/phpCAS]

	Apache CAS Client [https://github.com/Jasig/mod_auth_cas]

Other Clients

Other unofficial or incubating CAS clients may be found here [https://wiki.jasig.org/display/CASC].
Given the above projects are unofficial and not under direct maintenance of CAS,
their availability and accuracy may vary.

Samples

	CASified Python web application using Flask [https://github.com/cas-projects/cas-sample-python-webapp]

	CASified Java web application using Java CAS Client [https://github.com/cas-projects/cas-sample-java-webapp]

	Go CLI for CAS admin endpoints [https://github.com/cas-projects/casctl]

	Smoke Testing CAS HA Deployments [https://github.com/cas-projects/duct]

	CASified Bootiful Java web application [https://github.com/cas-projects/bootiful-cas-client]

Framework Support

The following programming frameworks have built-in support for CAS:

	Spring Security [http://static.springsource.org/spring-security/site/]

	Apache Shiro [http://shiro.apache.org/cas.html]

	Pac4j [https://github.com/pac4j/pac4j]

Build your own CAS client

As a lot of CAS clients already exist, there is little opportunity to develop a CAS client and it should be avoided as much as possible. Indeed, creating your own client is not an easy job and you’re most likely to generate security breaches.

Though, if you really need to create your own CAS client, please be aware of these incomplete guidelines:

	Rely on a static internal configuration instead of leveraging the behaviour on received inputs which can be forged

	Ensure that all outside inputs are properly decoded and encoded when used calls to CAS or other services

	Ensure that input is validated and that overly large inputs are discarded.

 High Availability Performance Testing

layout: default
title: CAS - High Availability Performance Testing

High Availability Performance Testing

Load testing is an important part of ensuring that the CAS server deployment is ready for prime time production use. This page outlines a number of strategies and tools you may use to run performance tests on your deployment and observe results.

Locust

Locust [http://locust.io/] is an easy-to-use, distributed, user load testing tool. It is intended for load-testing web sites (or other systems) and figuring out how many concurrent users a system can handle. See this guide [http://docs.locust.io/en/latest/what-is-locust.html] for more info.

Setup

A fundamental feature of Locust is that you describe all your tests in Python code. No need for clunky UIs or bloated XML, just plain code. For this to work, you will need to download Python [https://www.python.org/downloads/]. Next download the Locust test suite from here [https://github.com/apereo/cas/raw/master/etc/loadtests/locustfiles.tgz] and configure a virtual environment [https://virtualenv.pypa.io/en/stable/] to install modules:

pip install virtualenv
virtualenv mylocustenv/

Use `requirements.py3.txt` for Python 3.x
pip install -r requirements.txt

Install Locust via the following:

pip install locustio

Create a credentials.csv file that contains username,password entries used for load tests.

echo casuser,Mellon > cas5/credentials.csv

Run the script as such:

locust -f cas5/locustfile.py --host=https://cas.example.org
...
[2017-05-02 16:31:49,742] test/INFO/locust.main: Starting web monitor at *:8089
[2017-05-02 16:31:49,744] test/INFO/locust.main: Starting Locust 0.8a2

Navigate to http://localhost:8089 and proceed with starting the test swarm.

 Upgrade Guide

layout: default
title: CAS - Upgrade Guide

Upgrade Guide

In general, it is recommended that adopters try to keep their CAS deployment in alignment with the latest CAS version available.
In particular, releases that are of PATCH or SECURITY nature should be immediately applied as they are drop-in replacements
for their corresponding parent version. See CAS Release Policy for more info.

The general objectives of a CAS upgrade could be:

	Does the upgrade fix a critical security vulnerability or annoying issue? Is my CAS deployment
affected by that vulnerability and/or bug?

	Does the upgrade present features that might be useful to achieve local use cases?

	Does the upgrade provide functionality that is carried locally within my overlay, such that by getting rid of those
local changes, I can realize their benefit from CAS directly and end up with a smaller more-maintainable overlay?

This document attempts to describe, at a very high level, the scope and effort required to upgrade a given
CAS deployment. Rather than describing all steps/changes that would be required
to review and adjust (which would be impossible), we describe a strategy by which the upgrade could be executed.

Change Log

Before attempting to upgrade, please review the CAS change log [https://github.com/apereo/cas/releases] to determine
what changes/fixes are contained in the version you intend to upgrade to, and whether those are applicable to your environment
and your CAS deployment. If you are working with an older CAS version and are experiencing what appears to be a bug, chances are
by reviewing the change log, you will find a drop-in replacement for your overlay that takes care of the issue.

Discuss Issue

Having reviewed the change log, if you do not see an improvement that fixes/adjusts the behavior you have in mind,
please discuss the issue on the appropriate CAS mailing lists. The result of the discussing would be a scope/effort
evaluation to determine feasibility of the solution and the target version in which the fix will be done.

Scope Review

Once you decide your ideal CAS version for the upgrade, before attempting to upgrade,
please review the CAS Release Policy. This will provide you
with an understanding of what changes you may expect from new version and what the required effort
may be for the upgrade.

Evaluate Local Overlay

As a best practice, it is recommended that you deploy CAS via the overlay method.
If you have, the task here would be to identify the number of files your overlay has touched and modified. Catalog the
what and why of the changes applied, and cross-check those changes with the CAS change log. Chances are, many of the
local changes that are present within your overlay are provided by default via CAS as a result of that upgrade which will
have you shed many of those improvements locally.

Your changes typically are:

	Authentication scheme and strategy (i.e. LDAP, JDBC, etc)

	Settings controlling CAS behavior in CAS properties files

	User Interface changes may include CSS and JavaScript

	Attribute resolution and release policy

	Services registered and authorized to use CAS

Prepare Development Environment

 Installation Requirements

layout: default
title: CAS - Installation Requirements

Installation Requirements

Depending on choice of configuration components, there may be additional requirements such as LDAP directory,
database, and caching infrastructure. In most cases, however, requirements should be self evident to deployers who
choose components with clear hardware and software dependencies. In any case where additional requirements are
not obvious, the discussion of component configuration should mention system, software, hardware, and other
requirements.

Java

CAS at its heart is a Java-based web application. Prior to deployment, you will need JDK [http://www.oracle.com/technetwork/java/javase/downloads/index.html] v1.8 installed.

Servlet Containers

There is no officially supported servlet container for CAS, but Apache Tomcat [http://tomcat.apache.org/] is the most
commonly used. Support for a particular servlet container depends on the expertise of community members.

See this guide for more info.

Build Tools

Maven or Gradle overlays are provided to allow for a straightforward and flexible
deployment solution. While it admittedly requires a high up-front cost in learning, it reaps numerous
benefits in the long run.

Do Less
You DO NOT need to have Maven or Gradle installed prior to the installation. They are provided to you automatically.

Git (Optional)

While not strictly a requirement, it’s HIGHLY recommended that you have Git [https://git-scm.com/downloads] installed for your CAS deployment,
and manage all CAS artifacts, configuration files, build scripts and setting inside a source control repository.

OS

No particular preference on the operating system, though Linux-based installs are typically more common than Windows.

Internet Connectivity

Internet connectivity is generally required for the build phase of any Maven/Gradle based project, including the recommended WAR overlays used to install CAS. The build process resolves dependencies by searching online repositories containing artifacts (jar files in most cases) that are downloaded and installed locally.

Hardware

Anecdotal community evidence seems to suggest that CAS deployments would perform well on a dual-core 2.00Ghz processor with 4GB of memory, at a minimum. Enough disk space (preferrably SSD) is also needed to house CAS-generated logs, if logs are kept on the server itself.

Remember that the above requirements are simply suggestions. You may get by perfectly fine with more or less, depending on your deployment and request volume. Start with the bare minimum and be prepared to adjust and strengthen capacity on demand if needed.

 Architecture

layout: default
title: CAS - Architecture

Architecture

[image: CAS Architecture Diagram]

System Components

The CAS server and clients comprise the two physical components of the CAS system architecture that communicate
by means of various protocols.

CAS Server

The CAS server is Java servlet built on the Spring Framework whose primary responsibility is to authenticate users
and grant access to CAS-enabled services, commonly called CAS clients, by issuing and validating tickets.
An SSO session is created when the server issues a ticket-granting ticket (TGT) to the user upon successful login.
A service ticket (ST) is issued to a service at the user’s request via browser redirects using the TGT as a token.
The ST is subsequently validated at the CAS server via back-channel communication.
These interactions are described in great detail in the CAS Protocol document.

CAS Clients

The term “CAS client” has two distinct meanings in its common use. A CAS client is any CAS-enabled application that
can communicate with the server via a supported protocol. A CAS client is also a software package that can be
integrated with various software platforms and applications in order to communicate with the CAS server via some
authentication protocol (e.g. CAS, SAML, OAuth). CAS clients supporting a number of software platforms and products
have been developed.

Platforms:

	Apache httpd Server (mod_auth_cas module [https://github.com/Jasig/mod_auth_cas])

	Java (Java CAS Client [https://github.com/apereo/java-cas-client])

	.NET (.NET CAS Client [https://github.com/apereo/dotnet-cas-client])

	PHP (phpCAS [https://github.com/Jasig/phpCAS])

	Perl (PerlCAS)

	Python (pycas)

	Ruby (rubycas-client)

Applications:

	Canvas

	Atlassian Confluence

	Atlassian JIRA

	Drupal

	Liferay

	uPortal

	...

When the term “CAS client” appears in this manual without further qualification, it refers to the integration
components such as the Java CAS Client rather than to the application relying upon (a client of) the CAS server.

Supported Protocols

Clients communicate with the server by any of several supported protocols. All the supported protocols are
conceptually similar, yet some have features or characteristics that make them desirable for particular applications or use cases. For example, the CAS protocol supports delegated (proxy) authentication, and the SAML protocol supports attribute release and single sign-out.

Supported protocols:

	CAS (versions 1, 2, and 3)

	SAML 1.1 and 2

	OpenID Connect

	OpenID

	OAuth 2.0

	WS Federation

Software Components

It is helpful to describe the CAS server in terms of three layered subsystems:

	Web (Spring MVC/Spring Webflow)

	Ticketing

	Authentication

Almost all deployment considerations and component configuration involve those three subsystems. The Web tier is the endpoint for communication with all external systems including CAS clients. The Web tier delegates to the ticketing subsystem to generate tickets for CAS client access. The SSO session begins with the issuance of a ticket-granting ticket on successful authentication, thus the ticketing subsystem frequently delegates to the authentication subsystem.

The authentication system is typically only processing requests at the start of the SSO session, though there are other cases when it can be invoked (e.g. forced authentication).

Spring Framework

CAS uses the many aspects of the Spring Framework; most notably,
Spring MVC [http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html] and
Spring Webflow [http://www.springsource.org/spring-web-flow]. Spring provides a complete and extensible framework for
the core CAS codebase as well as for deployers; it’s straightforward to customize or extend CAS behavior by hooking
CAS and Spring API extension points. General knowledge of Spring is beneficial to understanding the interplay among
some framework components, but it’s not strictly required.

CAS is also heavily based on Spring Boot [http://projects.spring.io/spring-boot/], which allows it to take an opinionated view of
the Spring platform and third-party libraries to create a stand-alone web application without the hassle of XML configuration as much as possible.
Spring Boot allows CAS to hide much of internal complexity of its components and their configuration and instead provides auto-configuration modules that simply
and automatically configure the running application context without much server interference.

 Getting Started

layout: default
title: CAS - Getting Started Guide

Getting Started

This document provides a high-level guide on how to get started with a CAS server deployment.
The sole focus of the guide is describe the process
that must be followed and adopted by CAS deployers in order to arrive at a successful
and sustainable architecture and deployment.

Collect Use Cases

It is very important that you document, catalog and analyze your desired use cases and requirements prior to the deployment.
Once you have a few ideas, please discuss and share those with the CAS community
to learn about common trends, practices and patterns
that may already have solved the same issues you face today.

KISSIn general, avoid designing and/or adopting
use cases and workflows that heavily alter the CAS internal components, induce a heavy burden your management
and maintenance of the configuration or re-invent the CAS software and its supported protocols. All options simply
add to maintenance cost and headache.

Study Architecture

Understand what CAS is and can do. This will help you develop a foundation to realize which of your use cases
and requirements may already be possible with CAS. Take a look at the fundamentals
of the CAS architecture
to see what options and choices might be available for deployments and application integrations.

Likewise, it’s equally important that you study the list of
CAS supported protocols and specifications.

Review Blog

From time to time, blog posts appears on the Apereo Blog [https://apereo.github.io/]
that might become useful as you are thinking about requirements and evaluating features.
It is generally recommended that you follow the blog and keep up with project news and
announcements as much as possible, and do not shy away from writing and contributing your own blog posts, experiences and updates throughout your CAS deployment.

Prepare Environment

Quite simply, study the installation requirements for the deployment environment.

Deploy CAS

It is recommended to build and deploy CAS locally using the WAR Overlay method.
This approach does not require the adopter to explicitly download any version of CAS, but
rather utilizes the overlay mechanism to combine CAS original artifacts and local
customizations to further ease future upgrades and maintenance.

Note: Do NOT clone or download the CAS codebase directly. That is ONLY required if you
wish to contribute to the development of the project.

It is VERY IMPORTANT that you try to get a functional baseline working before doing anything else.
Avoid making ad-hoc changes right away to customize the deployment. Stick with the CAS-provided defaults
and settings and make changes one step at a time. Keep track of process and applied changes
in source control and tag changes as you make progress.

Customize

This is where use cases get mapped to CAS features. Browse the documentation to find the closest match and apply.
Again, it is important that you stick with the CAS baseline as much as possible:

	Avoid making ad-hoc changes to the software internals.

	Avoid making manual changes to core configuration components such as Spring and Spring Webflow.

	Avoid making one-off bug fixes to the deployment, should you encounter an issue.

As noted previously, all such strategies lead to headache and cost.

Instead, try to warm up to the following suggestions:

	Bug fixes and small improvements belong to the core CAS software. Not your deployment. Make every attempt to report issues,
contribute fixes and patches and work with the CAS community to solve issues once and for all.

	Certain number of internal CAS components are made difficult to augment and modify. In most cases, this approach is
done on purpose to steer you away from dangerous and needlessly complicated changes. If you come across a need
and have a feature or use case in mind whose configuration and implementation requires modifications to the core internals
of the software, discuss that with the CAS community and attempt to build the enhancement directly into the CAS software,
rather than treating it as a snowflake.

To summarize, only make changes to the deployment configuration if they are truly and completely specific to your needs.
Otherwise, try to generalize and contribute back to keep maintenance costs down.
Repeatedly, failure to comply with this strategy
will likely lead to disastrous results in the long run.

Troubleshooting

The troubleshooting guide might have some answers
for issues you may have run into and it generally tries to describe a strategy useful for troubleshooting
and diagnostics. You may also seek assistance from the CAS community.

 Security Guide

layout: default
title: CAS - Security Guide

Security Guide

CAS is security software that provides secure Web-based single sign-on to Web-based applications. Single sign-on
provides a win/win in terms of security and convenience: it reduces password exposure to a single, trusted credential
broker while transparently providing access to multiple services without repetitious logins. The use of CAS generally
improves the security environment, but there are several CAS configuration, policy, and deployment concerns that should
be considered to achieve suitable security.

Reporting IssuesThe security team asks that you please DO NOT create publicly-viewable issues or posts to discuss what you may consider a security vulnerability. To report issues properly and learn about how responses are produced, please see this guide.

Announcements

	Mar 6 2017 Vulnerability Disclosure [https://apereo.github.io/2017/03/01/moncfgsecvulndisc/]

	Oct 24 2016 Vulnerability Disclosure [https://apereo.github.io/2016/10/24/servlvulndisc/]

	Apr 8 2016 Vulnerability Disclosure [https://apereo.github.io/2016/04/08/commonsvulndisc/]

System Security Considerations

Infrastructure security matters to consider may include the following.

Secure Transport (https)

All communication with the CAS server MUST occur over a secure channel (i.e. TLSv1). There are two primary
justifications for this requirement:

	The authentication process requires transmission of security credentials.

	The CAS ticket-granting ticket is a bearer token.

Since the disclosure of either data would allow impersonation attacks, it’s vitally important to secure the
communication channel between CAS clients and the CAS server.

Practically, it means that all CAS urls must use HTTPS, but it also means that all connections
from the CAS server to the application must be done using HTTPS:

	when the generated service ticket is sent back to the application on the “service” url

	when a proxy callback url is called.

To see the relevant list of CAS properties and tune this behavior, please review this guide.

Connections to Dependent Systems

CAS commonly requires connections to other systems such as LDAP directories, databases, and caching services.
We generally recommend to use secure transport (SSL/TLS, IPSec) to those systems where possible, but there may
be compensating controls that make secure transport unnecessary. Private networks and corporate networks with strict
access controls are common exceptions, but secure transport is recommended nonetheless.
Client certification validation can be another good solution for LDAP to bring sufficient security.

As stated previously, connections to other systems must be secured. But if the CAS server is deployed on several nodes,
the same applies to the CAS server itself. If a cache-based ticket registry runs without any security issue on a single
CAS server, synchronization can become a security problem when using multiple nodes if the network is not protected.

Any disk storage is also vulnerable if not properly secured. EhCache overflow to disk may be turned off to increase
protection whereas advanced encryption data mechanism should be used for the database disk storage.

Deployment-Driven Security Features

CAS supports a number of features that can be leveraged to implement various security policies.
The following features are provided through CAS configuration and CAS client integration. Note that many features
are available out of the box, while others require explicit setup

Forced Authentication

Many CAS clients and supported protocols support the concept of forced authentication whereby a user must
re-authenticate to access a particular service. The CAS protocols support forced authentication via the renew
parameter. Forced authentication provides additional assurance in the identity of
the principal of an SSO session since the user must verify his or her credentials prior to access.
Forced authentication is suitable for services where higher security is desired or mandated. Typically forced
authentication is configured on a per-service basis, but the service management facility
provides some support for implementing forced authentication as a matter of centralized security policy.
Forced authentication may be combined with multi-factor authentication features to
implement arbitrary service-specific access control policy.

Passive Authentication

Some CAS protocols support passive authentication where access to a CAS-protected service is granted anonymously
when requested. The CASv2 and CASv3 protocols support this capability via the gateway feature. Passive authentication
complements forced authentication; where forced authentication requires authentication to access a service, passive
authentication permits service access, albeit anonymously, without authentication.

Proxy Authentication

Proxy authentication, or delegated authentication, provides a powerful, important, and potentially security-improving
feature of CAS. Proxy authentication is supported by the CASv2 and CASv3 protocols and is mediated by proxy tickets
that are requested by a service on behalf of a user; thus the service proxies authentication for the user.
Proxy authentication is commonly used in cases where a service cannot interact directly with the user and as an
alternative to replaying end-user credentials to a service.

However, proxy tickets carry risk in that services accepting proxy tickets are responsible for validating the
proxy chain (the list of services through which the end-user’s authentication have been delegated to arrive at
the ticket validating service). Services can opt out of accepting proxy tickets entirely (and avoid
responsibility for validating proxy chains) by simply validating tickets against the /serviceValidate
validation endpoint, but experience has shown it’s easy to be confused about this and configure to
unintentionally use the /proxyValidate endpoint yet not scrutinize any proxy chains that appear in the
ticket validation response. Thus proxy authentication requires careful configuration for proper security controls;
it is recommended to disable proxy authentication components at the CAS server if proxy authentication is not
needed.

Historically any service could obtain a proxy-granting ticket and from it a proxy ticket to access any other service.
In other words, the security model is decentralized rather than centralized. The service management facility affords
some centralized control of proxy authentication by exposing a proxy authentication flag that can enabled or disabled
on a per-service basis. By default registered services are not granted proxy authentication capability.

Credential Caching and Replay

The ClearPass extension provides a mechanism to capture primary authentication credentials, cache them (encrypted),
and replay on demand as needed to access legacy services. While proxy authentication
is recommended in lieu of password replay, it may be required to integrate legacy services with CAS. See the
ClearPass documentation for detailed information.

Service Management

The service management facility provides a number of service-specific configuration controls that affect security
policy and provide some support for centralized security policy. (Note that CAS has historically supported the
decentralized security policy model.) Some highlights of service management controls:

	Authorized services

	Forced authentication

	Attribute release

	Proxy authentication control

	Theme control

	Service authorization control

	Multi-factor service access policy

The service management facility is comprised of a service registry containing one or more registered services, each
of which specifies the management controls above. The service registry can be controlled via static configuration files,
a Web user interface, or both. See the Service Management section for more
information.

Authorized Services
As a security best practice, it is strongly recommended to limit the service management facility
to only include the list of known applications that are authorized to use CAS. Leaving the management interface
open for all applications may create an opportunity for security attacks.

SSO Cookie Encryption

A ticket-granting cookie is an HTTP cookie set by CAS upon the establishment of a single sign-on session.
The cookie value is by default encrypted and signed via settings defined in CAS properties.
While sample data is provided for initial deployments, these keys MUST be regenerated per your specific
environment. Please see this guide for more info.

Password Management Secure Links

Account password reset requests are handled via a secured link that is sent to the registered
email address of the user. The link is available only within a defined time window
and the request is properly signed and encrypted by CAS. While sample data is provided for initial deployments, these keys MUST be regenerated per your specific environment.

Please see this guide for more info.

Protocol Ticket Encryption

Protocol tickets that are issued by CAS may optionally go through a signing/encryption process. Even though the
CAS server will always cross check ticket validity and expiration policy, this may be forced as an extra check
to ensure tickets in transit to other applications are not tampered with and remain to be authentic. While sample data is provided for initial deployments, these keys MUST be regenerated per your specific environment.

To see the relevant list of CAS properties, please review this guide.

Ticket Registry Encryption

Secure ticket replication as it regards clustered CAS deployments may be required to ensure generated tickets by CAS are not tampered with in transit. CAS covers this issue by allowing tickets to be natively encrypted and signed. While sample data is provided for initial deployments, these keys MUST be regenerated per your specific environment.
Please see this guide for more info.

Administrative Pages Security

CAS provides a large variety of web interfaces that are aimed at system administrators and deployers.
These screens along with a number of REST endpoints allow a CAS deployer to manage and reconfigure CAS behavior without resorting to
native command-line interfaces. Needless to say, these endpoints and screens must be secured and allowed proper access only to
authorized parties. Please see this guide for more info.

Ticket Expiration Policies

Ticket expiration policies are a primary mechanism for implementing security policy. Ticket expiration policy allows
control of some important aspects of CAS SSO session behavior:

	SSO session duration (sliding expiration, absolute)

	Ticket reuse

See the Configuring Ticketing Components section for a
detailed discussion of the various expiration policies and configuration instructions.

Single Sign-Out

Single sign-out, or single log-out (SLO), is a feature by which CAS services are notified of the termination of a CAS
SSO session with the expectation that services terminate access for the SSO session owner. While single sign-out can
improve security, it is fundamentally a best-effort facility and may not actually terminate access to all services
consumed during an SSO session. The following compensating controls may be used to improve risks associated with
single sign-out shortcomings:

	Require forced authentication for sensitive services

	Reduce application session timeouts

	Reduce SSO session duration

SLO can happen in two ways: from the CAS server (back-channel logout) and/or from the browser (front-channel logout).
For back-channel logout, the SLO process relies on the SimpleHttpClient class which has a threads pool: its size must be defined to properly treat all the logout requests.
Additional not-already-processed logout requests are temporarily stored in a queue before being sent: its size is defined to 20% of the global capacity of the threads pool and can be adjusted.
Both sizes are critical settings of the CAS system and their values should never exceed the real capacity of the CAS server.

Login Throttling

CAS supports a policy-driven feature to limit successive failed authentication attempts to help prevent brute force
and denial of service attacks. The feature is beneficial in environments where back-end authentication stores lack
equivalent features. In cases where this support is available in underlying systems, we encourage using it instead
of CAS features; the justification is that enabling support in underlying systems provides the feature in all dependent
systems including CAS. See the
login throttling configuration
section for further information.

Credential Encryption

To learn how sensitive CAS settings can be secured via encryption, please review this guide.

CAS Security Filter

The CAS project provides a number of a blunt generic security filters [https://github.com/apereo/cas-server-security-filter] suitable for patching-in-place Java
CAS server and Java CAS client deployments vulnerable to certain request parameter based bad-CAS-protocol-input attacks.
The filters are configured to sanitize authentication request parameters and reject the request if it is not compliant with
the CAS protocol in the event that for instance, a parameter is repeated multiple times, includes multiple values, contains unacceptable values, etc.

It is STRONGLY recommended that all CAS deployments be evaluated and include this configuration if necessary to prevent
protocol attacks in situations where the CAS container and environment are unable to block malicious and badly-configured requests.

CORS

CAS provides first-class support for enabling HTTP access control (CORS).
One application of CORS is when a resource makes a cross-origin HTTP request when it requests a resource from a
different domain than the one which the first resource itself serves. This should help more with CAS-enabled
applications are accessed via XHR/Ajax requests.

To see the relevant list of CAS properties and tune this behavior, please review this guide.

Security Response Headers

As part of the CAS Security Filter, the CAS project automatically provides the necessary configuration to
insert HTTP Security headers into the web response to prevent against HSTS, XSS, X-FRAME and other attacks.
These settings are presently off by default.
To see the relevant list of CAS properties and tune this behavior, please review this guide.

To review and learn more about these options, please visit this guide [https://github.com/apereo/cas-server-security-filter].

Spring Webflow Sessions

The CAS project uses Spring Webflow to manage and orchestrate the authentication process. The conversational state of the
webflow used by CAS is managed by the client which is then passed and tracked throughout various states of the authentication
process. This state must be secured and encrypted to prevent session hijacking. While CAS provides default encryption
settings out of the box, it is STRONGLY recommended that all CAS deployments be
evaluated prior to production rollouts and regenerate this configuration to prevent attacks.

Long Term Authentication

The long term authentication feature, commonly referred to as “Remember Me”, is selected (usually via checkbox) on the CAS login
form to avoid re-authentication for an extended period of time. Long term authentication allows users to elect additional convenience at
the expense of reduced security. The extent of reduced security is a function of the characteristics of the device used to establish
a CAS SSO session. A long-term SSO session established from a device owned or operated by a single user is marginally less secure than
a standard CAS SSO session. The only real concern would be the increased lifetime and resulting increased exposure of the
CAS ticket-granting ticket. Establishing a long-term CAS SSO session from a shared device, on the other hand, may dramatically reduce security.
The likelihood of artifacts from previous SSO sessions affecting subsequent SSO sessions established by other users, even in the face
of single sign-out, may increase the likelihood of impersonation. While there is no feasible mitigation for improving security
of long-term SSO sessions on a shared device, educating users on the inherent risks may improve overall security.

It is important to note that forced authentication supersedes long term authentication, thus if a service were
configured for forced authentication, authentication would be required for service access even in the context of a
long-term session.

Long term authentication support must be explicitly enabled through
configuration and UI customization
during the installation process. Thus deployers choose to offer long-term authentication support, and when available
users may elect to use it via selection on the CAS login form.

Warn

CAS supports optional notification of service access during an established SSO session. By default CAS
transparently requests tickets needed for service access and presents them to the target service for validation,
whereby upon successful validation access to the service is permitted. In most cases this happens nearly instantly
and the user is not aware of the CAS authentication process required to access CAS-enabled services. There may be
some security benefit to awareness of this process, and CAS supports a warn flag that may be selected by the user
on the CAS login screen to provide an interstitial notification page that is displayed prior to accessing a service.
By default the notification page offers the user an option to proceed with CAS authentication or abort by
navigating away from the target service.

 High Availability Guide (HA/Clustering)

layout: default
title: CAS - High Availability Guide

High Availability Guide (HA/Clustering)

A highly available CAS deployment is one that offers resilience in response to various failure modes such that CAS
continues to offer SSO services despite failures. We offer a recommended architecture that provides a starting point for
planning and executing a CAS deployment that meets institutional performance and availability requirements.
It also provides a framework for understanding CAS software component requirements imposed by HA considerations.

A high availability (HA) configuration of CAS is achieved by ensuring there is adequate redundancy so that
the service is robust in the face of component failures and that routine maintenance can be done without service downtime.
This can be achieved with multi-node and to a lesser degree with single-node CAS with advanced virtual machine capabilities.
This document will focus on the CAS Server components required to achieve HA. A more quantitative analysis of HA configuration
depends on supporting infrastructure and services and is beyond the scope of this document.

The CAS Server software has had a great track record of being extremely reliable. However, the CAS Server is only a
small part of software and hardware that authentication has to traverse to work smoothly. Clustering has typically
been used by deployers not only for load handling but also for fail-over. Even if a failure does not occur, it is
sometimes desirable to restart a server. For example, if a serious security fix at the operating system level was
installed, the server should be restarted immediately. In a cluster of CAS servers, this could be easily accomplished
with a rolling restart even during the busiest time.

Operating a single server traditionally would delay such a restart until a less busy time, while running with a known
vulnerability. However, more recently with the growing acceptance of virtual machine technology and its inherent
redundancy and fault tolerance, single node CAS has been able to achieve similar qualities.

Recommended Architecture

The following diagram highlights the vital aspects of a highly available CAS deployment.

[image: Recommended HA Architecture]

It’s worth pointing out some important characteristics of this architecture:

	Dependent systems can tolerate up to N-1 node failures. (Where N is the total number of nodes.)

	CAS itself can tolerate up to N-1 node failures.

	Loss of a cache node DOES NOT cause loss of SSO state data (i.e. tickets) in replicating caches.

	Loss of a cache node MAY cause loss of SSO state data in non-replicating caches (e.g. memcached).

	Loss of SSO state data is always graceful: users simply re-authenticate.

Before proceeding into a detailed discussion of various aspects of the recommended architecture, we offer a guiding
principle for planning a highly available deployment:

Aim for SimplicityDesign the simplest solution that meets performance and availability requirements.

Experience has shown that simplicity is a vital system characteristic of successful and robust HA deployments.
Strive for simplicity and you will be well served.

Deployment Scenarios

Single-node CAS, HA VM Infrastructure

High availability can be achieved by implementing a single-node CAS running in a sophisticated virtualized environment.
This approach to high availability is attractive in the sense that it simplifies the CAS server configuration but
requires hardware virtualization technology that may not be present and available.

Physical Architecture

In a single-node VM architecture, the CAS server, along with the necessary prerequisites and software dependencies is deployed in a single host VM.
Under this deployment scenario the default in-memory Ticket Registry is sufficient and no Servlet Session replication is
required. This simplifies the deployment configuration and is the recommended approach if the VM infrastructure
is sufficient to meet HA and scalability needs.

Robustness

Hardware component failure/recovery is a feature of the virtualized environment such that the loss of a CPU,
memory or power does not cause a failure of the CAS server.

Zero downtime maintenance approach

True zero downtime maintenance (i.e. no observable impact to end users) is not achievable with this configuration.
However, staging of maintenance and upgrades can be done without downtime by leveraging the cloning ability of most
VM infrastructures. Once the new CAS Server node is ready, a brief cutover can be implemented which will effectively
end all current SSO sessions. This could be done by scheduling restart of Tomcat during low traffic times, after the new cas.war has been deployed.

Scalability

CAS itself has modest computing requirements such that any modern enterprise class server hardware is going to
be sufficient to handle 10,000s of users in typical deployment scenarios. In a recent client engagement load testing
a single node deployment yielded good results with CAS handling 200 concurrent users at 61 requests per second which
roughly translates into 108,000 authentication transactions per hour. These number are of course representative
and any benchmark will be highly dependent on local infrastructure.
VM environments should be able to scale the available CPU and memory to meet a wide range of needs.

Multiple CAS Server Nodes

A highly available CAS deployment is composed of two or more nodes behind a hardware load balancer in
either active/passive or active/active mode. In general the former offers simplicity with
adequate failover; the latter, improved resource usage and reduced service interruptions at the cost of additional complexity.
Active-passive configuration can be done with manual or automatic failover in the case where the primary CAS node fails.
Active-active configuration is possible with a clustered ticket registry state such that any available CAS node
can service any request for the CAS server. A number of options are available
for implementing an active-active configuration with shared ticket state.

HA can be achieved by implementing a multi-node CAS deployment running on multiple VMs or physical hosts.
This approach is attractive since it allows true zero down-time maintenance of the service at the cost of a marginal increase in deployment complexity.

Multi-node CAS generally involves the following:

	Installing multiple instances of the CAS server (so that one or more of the servers can be destroyed without the CAS service becoming unavailable)

	Configuring the multiple instances of the CAS server to share ticket state (so that regardless of which CAS server a user or service interacts with, the response from each CAS server is the same.)

	Configuring a solution for directing traffic among the clustered CAS servers, for detecting component failure and removing failed components from service

	Optionally, configuring a solution for sharing session state and session failover across the CAS instances (this isn’t typically appropriate, since end-user CAS sessions tend to be short lived and the experience is more request-response style than it is session oriented) - favor short-lived sticky (aka persistent sessions) load-balancing instead (could be a problem with large NAT deployments)

	Having appropriate contingency plans such that the desired margin of headroom against failure is restored when it is exercised. (For example, having three CAS server instances, clustered, serving a load that can be serviced with just two instances.)

Physical Architecture

The physical architecture may be realized through VMs or physical hardware. It is important to note that
in a shared ticket state model (Active/Active mode), CAS server nodes need to be able to communicate tickets
state across all nodes and as such, firewall restrictions between such nodes needs to be relaxed enough to allow for ticket state replication.

The service endpoint is a virtual IP address configured at the load balancer. Thus all requests are handled
by the load balancer and then routed to available CAS nodes.

Robustness

In the event of a CAS node failure, the work load and authentication requests can properly
be rerouted to another CAS node. It is possible that through the failover scenario, some state
may be lost depending on where the user is in the login flow and as such, once the rerouting of
the request has landed from the failed node to the clone, users may need be presented with the
CAS login screen again. This failure mode can be eliminated with Servlet session state replication.

Zero downtime maintenance approach

Maintenance work, such that it would include upgrades and application of patches to the
software may be carried out via two general approaches:

	In active-passive models, work may be carried out offline on the passive CAS node.
The load balancer is then tweaked to switch over the prepared node once ready thereby
switching the active-passive nodes around. This results in all CAS SSO sessions being reset and
possibly some Ticket validation failures if done during times with high utilization. See below for more details on this approach.

	In active-active models, one node can be taken offline while at least one other
CAS server node remains alive to respond to requests. Once the upgrade procedure is done,
the server can return to the pool while obtaining the ticket state from other active nodes. Certain
distributed ticket registry models have the ability to bootstrap themselves by receiving ticket
data from other nodes without any manual configuration or adjustment. See below for more details on this approach.

Scalability

Scalability is simply achieved by adding new CAS nodes to the cluster.

Active/Passive Mode

In an active/passive load balanced configuration, 1 of N nodes serves all requests at any given time. This simplifies
ticket storage requirements since it is not necessary to share ticket state among several application nodes.

In particular, the default ticket registry component that stores tickets in memory is suitable for active/failover
setups with the understanding that a node failure would result in ticket loss. It’s worth repeating that ticket loss
results in graceful application failure where users simply re-authenticate to CAS to create new SSO sessions;
CAS client sessions created under previous SSO sessions would suffer no interruption or loss of data.

Active/Active Mode

A load balancer in active/active mode serves requests to all N nodes simultaneously. The load balancer chooses a node
to serve a request based on a configured algorithm; typically least active or round robin. In this system architecture,
it is vitally important to use a ticket store where a ticket can be located regardless of which CAS node requests it.

It’s instructive to discuss the origin of this requirement. There are two interactions for tickets that occur from
fundamentally different network sources:

	User’s Web browser contacts CAS to generate a ticket.

	Target service contacts CAS with a ticket to validate it.

Since both requests flow through the load balancer from different source addresses, it is not possible to guarantee
that both requests are serviced by the same CAS node. Thus the requirement that a ticket be locatable regardless of
the CAS node that requests it. It should be clear why in-memory storage is not suitable for active/active deployments.

The active-active architecture allows for a zero down-time transitions between CAS server versions at the time of
upgrades. One CAS node instance can be taken offline, undergo maintenance, and then be put back into the production.
The same strategy is then repeated for all other CAS nodes.

There is a further consideration for active/active deployments: session affinity. Session affinity is a feature of
most load balancer equipment where the device performs state management for incoming requests and routes a client to
the same node for subsequent requests for a period of time. This feature is no longer required by default
as CAS is able to maintain state for the CAS login/logout webflows directly on the client-side. Additional
options are however provided to allow for servlet container session storage to be used with replication options
if necessary. See this guide to learn more.

Avoid Round Robin DNS

We strongly recommend avoiding round robin DNS as a cost-effective alternative to a hardware load balancer.
Client cache expiration policy is entirely uncontrollable, and typical cache expiration times are much longer than
desirable periods for node failover. A reverse proxy [http://httpd.apache.org/docs/current/mod/mod_proxy.html] or
software load balancer [http://www.linuxvirtualserver.org/software/ipvs.html] are recommended alternatives to hardware.

HA Ticket Registry

The following ticket storage components provide the best tradeoff among ease of use, scalability, and
fault tolerance and are suitable for both active/passive and active/active setups:

	Hazelcast

	EhCache

	MemCached

	Ignite

	Couchbase

The particular choice of storage technology should be driven by infrastructure and expertise as much as performance
and availability considerations. It’s hardly valuable to have a high-performance storage for which you lack the
expertise to troubleshoot when problems invariably arise.

The technology considerations of the various storage components merit some discussion since there are notable
differences that impact availability and performance characteristics. Cache systems like Ehcache and Hazelcast
offer a distributed cache that presents a single, consistent view of entries regardless
of the node contacted. Distributed caches rely on replication to provide for consistency. Cache systems like memcached
store the ticket on exactly 1 node and use a deterministic algorithm to locate the node containing the ticket:

N' = f(h(T), N1, N2, N3, ... Nm)

where h(T) is the hash of the ticket ID, N1 ... Nm is the set of cache nodes, and N’ is member of N ... Nm.

These sorts of cache systems do not require replication and generally provide for simplicity at the expense of some
durability.

Secure Cache Replication

A number of cache-based ticket registries support secure replication of ticket data across the wire,
so that tickets are encrypted and signed on replication attempts to prevent sniffing and eavesdrops.
See this guide for more info.

Distributing Service Definitions

In an HA environment, service definitions must be replicated and accessible by all nodes in
the CAS cluster. Typically, this may be achieved by leveraging centralized registry implementation that are backed
by JPA or LDAP. Registries that are backed by the file system need to devise a process of ensuring proper file
replication, either manually or via background daemon.

Connection Pooling

We strongly recommend that all IO connections to a back-end data stores, such as LDAP directories and databases,
leverage connection pooling where possible. It makes the best use of computational
(especially for SSL/TLS connections) and IO resources while providing the best performance characteristics.

Monitoring

CAS adopters typically implement monitoring of the availability of the CAS service using the tools already
in use in operational practice for monitoring other enterprise web applications. CAS introduces a new
modest monitoring page with authentication by default by the remote_address of the requestor.

Channel Confidentiality

Channel Confidentiality (via SSL/TLS) is assumed and critical to the security posture of the CAS system.
This includes both front-channel (between user browser-agent and CAS server) and back-channel
(between web application and CAS server) https traffic, any intermediate proxy traffic between load balancers or
content filters and CAS nodes, as well as primary authentication (e.g. LDAPS) and attribute resolution (JDBC over SSL).
Any break in the privacy controls at any stage comprises the overall security of the system.

Upgrades

CAS server upgrades should be carried out through the recommended WAR overlay approach. Established as a best
practice, the overlay approach allows one to seamlessly obtain the intended CAS server version from well
known and public repositories while laying custom changes specific on top of the downloaded binary artifact.
In the specifics of the overlay approach, it may also be desirable to externalize the configuration
outside of the cas.war so that the properties and logging configuration can vary across tiers for the same cas.war file.
That is, externalizing the environment-specific configuration allows the same cas.war to be promoted from server to server
and tier to tier, which increases the confidence that the web application that was tested and verified out of production will behave as tested in production.

 InMemory Service Registry

layout: default
title: CAS - InMemory Service Registry

InMemory Service Registry

This is an in-memory services management tool seeded from registration beans wired via Spring beans.

<util:list id="inMemoryRegisteredServices">
 <bean class="org.apereo.cas.services.RegexRegisteredService"
 p:id="1"
 p:name="HTTPS and IMAPS services on example.com"
 p:serviceId="^(https|imaps)://([A-Za-z0-9_-]+\.)*example\.com/.*"
 p:evaluationOrder="0" />
</util:list>

Given registered services are injected into the context as Spring bean definitions, you will need to consult the project’s javadocs
to learn more about the CAS service API, and how to inject various other components into the service defintion.

Caveat
This component is NOT suitable for use with the service management webapp since it does not persist data.
On the other hand, it is perfectly acceptable for deployments where the XML configuration is authoritative for
service registry data and the UI will not be used.

Auto Initialization

Upon startup and configuration permitting,
the registry is able to auto initialize itself from default
JSON service definitions available to CAS.

To see the relevant list of CAS properties, please review this guide.

 Configure Service Access Strategy

layout: default
title: CAS - Configuring Service Access Strategy

Configure Service Access Strategy

The access strategy of a registered service provides fine-grained control over the service authorization rules.
it describes whether the service is allowed to use the CAS server, allowed to participate in
single sign-on authentication, etc. Additionally, it may be configured to require a certain set of principal
attributes that must exist before access can be granted to the service. This behavior allows one to configure
various attributes in terms of access roles for the application and define rules that would be enacted and
validated when an authentication request from the application arrives.

Default Strategy

The default strategy allows one to configure a service with the following properties:

| Field | Description
|———————————–|———————————————————————————
| enabled | Flag to toggle whether the entry is active; a disabled entry produces behavior equivalent to a non-existent entry.
| ssoEnabled | Set to false to force users to authenticate to the service regardless of protocol flags (e.g. renew=true). This flag provides some support for centralized application of security policy.
| requiredAttributes | A Map of required principal attribute names along with the set of values for each attribute. These attributes MUST be available to the authenticated Principal and resolved before CAS can proceed, providing an option for role-based access control from the CAS perspective. If no required attributes are presented, the check will be entirely ignored.
| requireAllAttributes | Flag to toggle to control the behavior of required attributes. Default is true, which means all required attribute names must be present. Otherwise, at least one matching attribute name may suffice. Note that this flag only controls which and how many of the attribute names must be present. If attribute names satisfy the CAS configuration, at the next step at least one matching attribute value is required for the access strategy to proceed successfully.
| unauthorizedRedirectUrl | Optional url to redirect the flow in case service access is not allowed.
| caseInsensitive | Indicates whether matching on required attribute values should be done in a case-insensitive manner. Default is false
| rejectedAttributes | A Map of rejected principal attribute names along with the set of values for each attribute. These attributes MUST NOT be available to the authenticated Principal so that access may be granted. If none is defined, the check is entirely ignored.

Are we sensitive to case?Note that comparison of principal/required attribute names is
case-sensitive. Exact matches are required for any individual attribute name.

Released AttributesNote that if the CAS server is configured to cache attributes upon release, all required attributes must also be released to the relying party. See this guide for more info on attribute release and filters.

Examples

The following examples demonstrate access policy enforcement features of CAS.

Disable Service Access

Service is not allowed to use CAS:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "testId",
 "name" : "testId",
 "id" : 1,
 "accessStrategy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceAccessStrategy",
 "enabled" : false,
 "ssoEnabled" : true
 }
}

Disable Service SSO Access

Service will be challenged to present credentials every time, thereby not using SSO:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "testId",
 "name" : "testId",
 "id" : 1,
 "accessStrategy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceAccessStrategy",
 "enabled" : true,
 "ssoEnabled" : false
 }
}

Enforce Attributes

To access the service, the principal must have a cn attribute with the value of admin AND a
givenName attribute with the value of Administrator:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "testId",
 "name" : "testId",
 "id" : 1,
 "accessStrategy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceAccessStrategy",
 "enabled" : true,
 "ssoEnabled" : true,
 "requiredAttributes" : {
 "@class" : "java.util.HashMap",
 "cn" : ["java.util.HashSet", ["admin"]],
 "givenName" : ["java.util.HashSet", ["Administrator"]]
 }
 }
}

To access the service, the principal must have a cn attribute whose value is either of admin, Admin or TheAdmin.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "testId",
 "name" : "testId",
 "id" : 1,
 "accessStrategy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceAccessStrategy",
 "enabled" : true,
 "ssoEnabled" : true,
 "requiredAttributes" : {
 "@class" : "java.util.HashMap",
 "cn" : ["java.util.HashSet", ["admin, Admin, TheAdmin"]]
 }
 }
}

Enforce Combined Attribute Conditions

To access the service, the principal must have a cn attribute whose value is either of admin, Admin or TheAdmin,
OR the principal must have a member attribute whose value is either of admins, adminGroup or staff.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "testId",
 "name" : "testId",
 "id" : 1,
 "accessStrategy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceAccessStrategy",
 "enabled" : true,
 "requireAllAttributes" : false,
 "ssoEnabled" : true,
 "requiredAttributes" : {
 "@class" : "java.util.HashMap",
 "cn" : ["java.util.HashSet", ["admin, Admin, TheAdmin"]],
 "member" : ["java.util.HashSet", ["admins, adminGroup, staff"]]
 }
 }
}

Enforce Must-Not-Have Attributes

To access the service, the principal must have a cn attribute whose value is either of admin, Admin or TheAdmin,
OR the principal must have a member attribute whose value is either of admins, adminGroup or staff. The principal
also must not have an attribute “role” whose value matches the pattern deny.+.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "testId",
 "name" : "testId",
 "id" : 1,
 "accessStrategy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceAccessStrategy",
 "enabled" : true,
 "requireAllAttributes" : false,
 "ssoEnabled" : true,
 "requiredAttributes" : {
 "@class" : "java.util.HashMap",
 "cn" : ["java.util.HashSet", ["admin, Admin, TheAdmin"]],
 "member" : ["java.util.HashSet", ["admins, adminGroup, staff"]]
 },
 "rejectedAttributes" : {
 "@class" : "java.util.HashMap",
 "role" : ["java.util.HashSet", ["deny.+"]]
 }
 }
}

Time-Based

The time-based access strategy is an extension of the default which additionally,
allows one to configure a service with the following properties:

| Field | Description
|———————————–|———————————————————————————
| startingDateTime | Indicates the starting date/time whence service access may be granted. (i.e. 2015-10-11T09:55:16.552-07:00)
| endingDateTime | Indicates the ending date/time whence service access may be granted. (i.e. 2015-10-20T09:55:16.552-07:00)

Service access is only allowed within startingDateTime and endingDateTime:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "^https://.+",
 "name" : "test",
 "id" : 62,
 "accessStrategy" : {
 "@class" : "org.apereo.cas.services.TimeBasedRegisteredServiceAccessStrategy",
 "enabled" : true,
 "ssoEnabled" : true,
 "unauthorizedRedirectUrl" : "https://www.github.com",
 "startingDateTime" : "2015-11-01T13:19:54.132-07:00",
 "endingDateTime" : "2015-11-10T13:19:54.248-07:00"
 }
}

Remote Endpoint

This strategy is an extension of the default which additionally,
allows one to configure a service with the following properties:

| Field | Description
|———————————–|———————————————————————————
| endpointUrl | Endpoint that receives the authorization request from CAS for the authenticated principal.
| acceptableResponseCodes | Comma-separated response codes that are considered accepted for service access.

The objective of this policy is to ensure a remote endpoint can make service access decisions by
receiving the CAS authenticated principal as url parameter of a GET request. The response code that
the endpoint returns is then compared against the policy setting and if a match is found, access is granted.

Remote endpoint access strategy authorizing service access based on response code:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "^https://.+",
 "id" : 1,
 "accessStrategy" : {
 "@class" : "org.apereo.cas.services.RemoteEndpointServiceAccessStrategy",
 "endpointUrl" : "https://somewhere.example.org",
 "acceptableResponseCodes" : "200,202"
 }
}

Grouper

The grouper access strategy is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-grouper</artifactId>
 <version>${cas.version}</version>
</dependency>

This access strategy attempts to locate Grouper [https://www.internet2.edu/products-services/trust-identity-middleware/grouper/]
groups for the CAS principal. The groups returned by Grouper
are collected as CAS attributes and examined against the list of required attributes for service access.

The following properties are available:

| Field | Description | Values
|————–|———————————————————————————–|———————————————————–
| groupField | Attribute of the Grouper group used when converting the group to a CAS attribute. | NAME, EXTENSION, DISPLAY_NAME or DISPLAY_EXTENSION.

You will also need to ensure grouper.client.properties is available on the classpath (i.e. src/main/resources)
with the following configured properties:

grouperClient.webService.url = http://192.168.99.100:32768/grouper-ws/servicesRest
grouperClient.webService.login = banderson
grouperClient.webService.password = password

Grouper access strategy based on group’s display extension:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "^https://.+",
 "name" : "test",
 "id" : 62,
 "accessStrategy" : {
 "@class" : "org.apereo.cas.grouper.services.GrouperRegisteredServiceAccessStrategy",
 "enabled" : true,
 "ssoEnabled" : true,
 "requireAllAttributes" : true,
 "requiredAttributes" : {
 "@class" : "java.util.HashMap",
 "grouperAttributes" : ["java.util.HashSet", ["faculty"]]
 },
 "groupField" : "DISPLAY_EXTENSION"
 }
}

 Trusted Authentication

layout: default
title: CAS - Trusted Authentication

Trusted Authentication

The trusted authentication handler provides support for trusting authentication performed by some other component
in the HTTP request handling chain. Proxies (including Apache in a reverse proxy scenario) are the most common
components that perform authentication in front of CAS.

Trusted authentication handler support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-trusted-webflow</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

 Troubleshooting Guide

layout: default
title: CAS - Troubleshooting Guide

Troubleshooting Guide

A number of common questions and answers are gathered here. Please watch for updates as this is likely to grow as time/development moves on.

Review Logs

CAS server logs are the best resource for determining the root cause of the problem, provided you have configured the appropriate log levels.
Specifically you want to make sure DEBUG levels are turned on the org.apereo package in the log configuration:

<AsyncLogger name="org.apereo" level="debug" additivity="false" includeLocation="true">
 <AppenderRef ref="console"/>
 <AppenderRef ref="file"/>
</AsyncLogger>

When changes are applied, restart the server environment and observe the log files to get a better
understanding of CAS behavior. For more info, please review this guide on how to configure logs with CAS.

Note that the above configuration block only addresses logging behavior of CAS components; not those
upon which CAS depends. Consult the log4j configuration and turn on appropriate DEBUG logs for each relevant component.
Those are usually your best data source for diagnostics and troubleshooting.

If your container of choice is Apache Tomcat [https://tomcat.apache.org/tomcat-8.5-doc/logging.html],
you may also want to look into your catalina.out
and localhost-X-Y-Z.log log files to learn more about source of issues.

Deployment Problem; X Configuration Issue. Can You Help?

Study this.

How do I tune/extend MongoDb, MySQL, Spring Webflow, etc?

If you have a question about tuning and configuration of external components utilized by CAS
and you have a need to achieve more advanced use cases other than what the CAS defaults offer, your question is best
addressed by the community in charge of that component’s development and support. As a general rule,
you should always pick a technology with which you are most familiar, or otherwise, shoot a question to
the Spring Webflow, MongoDb, Hazelcast, etc forums to have experts review and recommend ideas.

Typical questions in this category that are best answered elsewhere are:

	How do I configure SSL for Apache Tomcat, Jetty, etc?

	How do I pass variables from one flow to the next in Spring webflow?

	How do I tune up a hazelcast cluster?

	What is the recommended strategy for making MongoDb highly available?

Using SNAPSHOT Versions

There may be cases where you learn that a fix is available for the defect or behavior relevant for your CAS deployments and you may be advised to upgrade to the current available SNAPSHOT release. Depending on your choice of installation, you will need to find the setting in your deployment configuration and build scripts that describes your current CAS version and bump that to the next SNAPSHOT. The build scripts should also have additional instructions on how to obtain and build SNAPSHOT releases in README files and such.

To find out what SNAPSHOT version applies to your deployment, you can either look at the release schedule or the appropriate branch of the CAS codebase. For instance, if you have deployed CAS 2.0.4 and the release schedule shows the next release is targetted for a 2.0.5, then the available SNAPSHOT release would be 2.0.5-SNAPSHOT. You can also take a look at the milestone setting assigned to the issue/pull request and determine the SNAPSHOT release. SNAPSHOT releases are always postfixed with -SNAPSHOT. If the assigned milestone to an issue is for instance 1.2.5-RC1, then the SNAPSHOT release would be 1.2.5-RC1-SNAPSHOT.

Configuring SSL Behind Load Balancer/Proxy

You might be running CAS inside a servlet container such as Apache Tomcat beind some sort of proxy such as haproxy, Apache httpd, etc where the proxy is handling the SSL termination. The connections to the user are secured via https, yet those between the proxy and CAS service are just http.

With this setup, the CAS login screen may still warn you about a non-secure connection. There is no setting in CAS that would allow you to control/adjust this, as this is entirely controlled by the container itself. All CAS cares about is whether the incoming connection request identifies itself as a secure connection. So to remove the warning, you will need to look into your container’s configuration and docs to see how the connection may be secured between the proxy and CAS.

For Apache Tomcat [https://tomcat.apache.org/tomcat-8.0-doc/config/http.html], you may be able to adjust the connector that talks to the proxy with a secure=true attribute.

Application X “redirected you too many times”

“Too many redirect” errors are usually cause by service ticket validation failure events, generally
caused by application misconfiguration.
Ticket validation failure may be caused by expired or unrecognized tickets, SSL-related
issues and such. Examine your CAS logs and you will find the cause.

Not Receiving Attributes

If your client application is not receiving attributes, you will need to make sure:

	The client is using a version of CAS protocol that is able to release attributes.

	The client, predicated on #1, is hitting the appropriate endpoint for service ticket validation.

	The CAS server itself is resolving and retrieving attributes correctly.

	The CAS server is authorized to release attributes to that particular client application inside its service registry.

Please review this guide to better understand the CAS service registry.

Application Not Authorized

You may encounter this error, when the requesting application/service url cannot be found in your CAS service registry. When an
authentication request is submitted to the CAS login endpoint, the destination application is indicated as a url parameter which
will be checked against the CAS service registry to determine if the application is allowed to use CAS. If the url is not found, this
message will be displayed back. Since service definitions in the registry have the ability to be defined by a url pattern,
it is entirely possible that the pattern in the registry for the service definition is misconfigured and does not produce a successful match
for the requested application url.

Please review this guide to better understand the CAS service registry.

Invalid/Expired CAS Tickets

You may experience INVAILD_TICKET related errors when attempting to use a CAS ticket whose expiration policy dictates that the ticket
has expired. The CAS log should further explain in more detail if the ticket is considered expired, but for diagnostic purposes,
you may want to adjust the ticket expiration policy configuration to remove and troubleshoot this error.

Furthermore, if the ticket itself cannot be located in the CAS ticket registry the ticket is also considered invalid. You will need
to observe the ticket used and compare it with the value that exists in the ticket registry to ensure that the ticket id provided is valid.

Out of Heap Memory Error

java.lang.OutOfMemoryError: GC overhead limit exceeded
 at java.util.Arrays.copyOfRange(Arrays.java:3658)
 at java.lang.StringBuffer.toString(StringBuffer.java:671)
 at

You may encounter this error, when in all likelihood, a cache-based ticket registry such as EhCache is used whose eviction policy
is not correctly configured. Objects and tickets are cached inside the registry storage back-end tend to linger around longer than
they should or the eviction policy is not doing a good enough job to clean unused tickets that may be marked as expired by CAS.

To troubleshoot, you can configure the JVM to perform a heap dump prior to exiting, which you should set up immediately so you have
some additional information if/when it happens next time. The follow system properties should do the trick:

-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath="/path/to/jvm-dump.hprof"

Also ensure that your container is configured to have enough memory available. For Apache Tomcat, the following setting as an environment variable may be configured:

CATALINA_OPTS=-Xms1000m -Xmx2000m

You will want to profile your server with something like JVisualVM [http://visualvm.java.net/] which should
be bundled with the JDK [https://docs.oracle.com/javase/7/docs/technotes/tools/share/jvisualvm.html]. This will help you see what is actually going on with your memory.

You might also consider taking periodic heap dumps using the JMap tool or YourKit Java profiler [http://www.yourkit.com/java/profiler/]
and analyzing offline using some analysis tool.

Finally, review the eviction policy of your ticket registry and ensure the values that determine object lifetime are appropriate for your environment.

PKIX Path Building Failed

Sep 28, 2009 4:13:26 PM org.apereo.cas.client.validation.AbstractCasProtocolUrlBasedTicketValidator retrieveResponseFromServer
SEVERE: javax.net.ssl.SSLHandshakeException:
sun.security.validator.ValidatorException: PKIX path building failed:
sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target
javax.net.ssl.SSLHandshakeException:
sun.security.validator.ValidatorException: PKIX path building failed:
sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target
 at com.sun.net.ssl.internal.ssl.Alerts.getSSLException(Unknown Source)
 at com.sun.net.ssl.internal.ssl.SSLSocketImpl.fatal(Unknown Source)
 at com.sun.net.ssl.internal.ssl.Handshaker.fatalSE(Unknown Source)
 at com.sun.net.ssl.internal.ssl.Handshaker.fatalSE(Unknown Source)
 at com.sun.net.ssl.internal.ssl.ClientHandshaker.serverCertificate(Unknown Source)

PKIX path building errors are the most common SSL errors. The problem here is that the CAS client does not trust the certificate presented by the
CAS server; most often this occurs because of using a self-signed certificate on the CAS server. To resolve this error, import the CAS server
certificate into the system truststore of the CAS client. If the certificate is issued by your own PKI, it is better to import the root certificate of your PKI into the CAS client truststore.

By default the Java system truststore is at $JAVA_HOME/jre/lib/security/cacerts. The certificate to be imported MUST be a DER-encoded file.
If the contents of the certificate file are binary, it’s likely DER-encoded; if the file begins with the text ---BEGIN CERTIFICATE---, it is PEM-encoded and needs to be converted to DER encoding.

keytool -import -keystore $JAVA_HOME/jre/lib/security/cacerts -file tmp/cert.der -alias certName

If you have multiple java editions installed on your machine, make sure that the app / web server is pointing to the correct JDK/JRE version
(The one to which the certificate has been exported correctly) One common mistake that occurs while generating self-validated certificates is that the JAVA_HOME might be different than that used by the server.

No subject alternative names

javax.net.ssl.SSLHandshakeException: java.security.cert.CertificateException: No subject alternative names present

This is a hostname/SSL certificate CN mismatch. This commonly happens when a self-signed certificate issued to localhost is placed on a machine that
is accessed by IP address. It should be noted that generating a certificate with an IP address for a common name, e.g. CN=192.168.1.1,OU=Middleware,dc=vt,dc=edu, will not work in most cases where the client making the connection is Java.

HTTPS hostname wrong

java.lang.RuntimeException: java.io.IOException: HTTPS hostname wrong: should be <eiger.iad.vt.edu>
 org.apereo.cas.client.validation.Saml11TicketValidator.retrieveResponseFromServer(Saml11TicketValidator.java:203)
 org.apereo.cas.client.validation.AbstractUrlBasedTicketValidator.validate(AbstractUrlBasedTicketValidator.java:185)
 org.apereo.cas.client.validation.AbstractTicketValidationFilter.doFilter

The above error occurs most commonly when the CAS client ticket validator attempts to contact the CAS server and is presented a certificate whose
CN does not match the fully-qualified host name of the CAS server. There are a few common root causes of this mismatch:

	CAS client misconfiguration

	Complex multi-tier server environment (e.g. clustered CAS server)

	Host name too broad for scope of wildcard certificate

It is also worth checking that the certificate your CAS server is using for SSL encryption matches the one the client is checking against.

No name matching X found

Caused by: java.security.cert.CertificateException: No name matching cas.server found
 at sun.security.util.HostnameChecker.matchDNS(Unknown Source) ~[?:1.8.0_77]
 at sun.security.util.HostnameChecker

Same as above.

Wildcard Certificates

Java support for wildcard certificates is limited to hosts strictly in the same domain as the wildcard. For example, a certificate with CN=.vt.edu matches hosts a.vt.edu and b.vt.edu, but not a.b.vt.edu.

Unrecognized Name Error

javax.net.ssl.SSLProtocolException: handshake alert: unrecognized_name

The above error occurs mainly in Oracle JDK CAS Server installations. In JDK, SNI (Server Name Indication) is enabled by default. When the HTTPD Server
does not send the correct Server Name back, the JDK HTTP Connection refuses to connect and the exception stated above is thrown.

You must ensure your HTTPD Server is sending back the correct hostname. E.g. in Apache HTTPD, you must set the ServerAlias in the SSL vhost:

ServerName your.ssl-server.name
ServerAlias your.ssl-server.name

Alternatively, you can disable the SNI detection in JDK, by adding this flag to the Java options of your CAS Servers’ application server configuration:

-Djsse.enableSNIExtension=false

When All Else Fails

If you have read, understood, and tried all the troubleshooting tips on this page and continue to have problems,
please perform an SSL trace and attach it to a posting to the
CAS mailing lists. An SSL trace is written to
STDOUT when the following system property is set, javax.net.debug=ssl.
An example follows of how to do this in the Tomcat servlet container.

Sample setenv.sh Tomcat Script follows:

Uncomment the next 4 lines for custom SSL keystore
used by all deployed applications
KEYSTORE="$HOME/path/to/custom.keystore"
CATALINA_OPTS=$CATALINA_OPTS" -Djavax.net.ssl.keyStore=$KEYSTORE"
CATALINA_OPTS=$CATALINA_OPTS" -Djavax.net.ssl.keyStoreType=BKS"
CATALINA_OPTS=$CATALINA_OPTS" -Djavax.net.ssl.keyStorePassword=changeit"

Uncomment the next 4 lines to allow custom SSL trust store
used by all deployed applications
TRUSTSTORE="$HOME/path/to/custom.truststore"
CATALINA_OPTS=$CATALINA_OPTS" -Djavax.net.ssl.trustStore=$TRUSTSTORE"
CATALINA_OPTS=$CATALINA_OPTS" -Djavax.net.ssl.trustStoreType=BKS"
CATALINA_OPTS=$CATALINA_OPTS" -Djavax.net.ssl.trustStorePassword=changeit"

Uncomment the next line to print SSL debug trace in catalina.out
CATALINA_OPTS=$CATALINA_OPTS" -Djavax.net.debug=ssl"

export CATALINA_OPTS

 RADIUS Authentication

layout: default
title: CAS - RADIUS Authentication

RADIUS Authentication

RADIUS support is enabled by only including the following dependency in the overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-radius</artifactId>
 <version>${cas.version}</version>
</dependency>

Configuration

To see the relevant list of CAS properties, please review this guide.

RSA RADIUS MFA

RSA RADIUS OTP support for MFA is enabled by only including the following dependency in the overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-radius-mfa</artifactId>
 <version>${cas.version}</version>
</dependency>

Configuration

To see the relevant list of CAS properties, please review this guide.

Repository

You may also need to declare the following repository in
your CAS overlay to be able to resolve dependencies:

<repositories>
 ...
 <repository>
 <id>jitpack</id>
 <url>https://jitpack.io</url>
 </repository>
 ...
</repositories>

 Ehcache Ticket Registry

layout: default
title: CAS - Ehcache Ticket Registry

Ehcache Ticket Registry

Ehcache integration is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-ehcache-ticket-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

This registry stores tickets in an Ehcache [http://ehcache.org/] instance.

Distributed Cache

Distributed caches are recommended for HA architectures since they offer fault tolerance in the ticket storage
subsystem. A single cache instance is created to house all types of tickets, and is synchronously replicated
across the cluster of nodes that are defined in the configuration.

RMI Replication

Ehcache supports RMI [http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/index.html]
replication for distributed caches composed of two or more nodes. To learn more about RMI
replication with Ehcache, see this resource [http://ehcache.org/documentation/user-guide/rmi-replicated-caching].

Configuration

To see the relevant list of CAS properties, please review this guide.

The Ehcache configuration for ehcache-replicated.xml mentioned in the config follows.

<ehcache name="ehCacheTicketRegistryCache"
 updateCheck="false"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://ehcache.org/ehcache.xsd">

 <diskStore path="java.io.tmpdir/cas"/>

 <!-- Automatic Peer Discovery
 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
 properties="peerDiscovery=automatic, multicastGroupAddress=230.0.0.1, multicastGroupPort=4446, timeToLive=32"
 propertySeparator="," />
 -->

 <!-- Manual Peer Discovery -->
 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
 properties="peerDiscovery=manual,rmiUrls=//localhost:41001/org.apereo.cas.ticket.TicketCache" />
 <cacheManagerPeerListenerFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"
 properties="port=41001,remoteObjectPort=41002" />
</ehcache>

Eviction Policy

Ehcache manages the internal eviction policy of cached objects via the idle and alive settings.
These settings control the general policy of the cache that is used to store various ticket types. In general,
you need to ensure the cache is alive long enough to support the individual expiration policy of tickets, and let
CAS clean the tickets as part of its own cleaner.

Troubleshooting Guidelines

	You will need to ensure that network communication across CAS nodes is allowed and no firewall or other component
is blocking traffic.

	If you are running this on a server with active firewalls, you will probably need to specify
a fixed remoteObjectPort, within the cacheManagerPeerListenerFactory.

	Depending on environment settings and version of Ehcache used, you may also have to adjust the
shared setting .

	Ensure that each cache manager specified a name that matches the Ehcache configuration itself.

	You may also need to adjust your expiration policy to allow for a larger time span, specially
for service tickets depending on network traffic and communication delay across CAS nodes particularly
in the event that a node is trying to join the cluster.

 Overview

layout: default
title: CAS - Configuring Principal Resolution

Overview

Principal resolution converts information in the authentication credential into a security principal
that commonly contains additional
metadata attributes (i.e. user details such as affiliations, group membership, email, display name).

A CAS principal contains a unique identifier by which the authenticated user will be known to all requesting
services. A principal also contains optional attributes that may be released
to services to support authorization and personalization. Principal resolution is a requisite part of the
authentication process that happens after credential authentication.

CAS AuthenticationHandler components provide simple principal resolution machinery by default. For example,
the LdapAuthenticationHandler component supports fetching attributes and setting the principal ID attribute from
an LDAP query. In all cases principals are resolved from the same store as that which provides authentication.

In many cases it is necessary to perform authentication by one means and resolve principals by another.
The PrincipalResolver component provides this functionality. A common use case for this this mix-and-match strategy
arises with X.509 authentication. It is common to store certificates in an LDAP directory and query the directory to
resolve the principal ID and attributes from directory attributes. The X509CertificateAuthenticationHandler may
be be combined with an LDAP-based principal resolver to accommodate this case.

Configuration

CAS uses the Person Directory library to provide a flexible principal resolution services against a number of data
sources. The key to configuring PersonDirectoryPrincipalResolver is the definition of an IPersonAttributeDao object.

To see the relevant list of CAS properties, please review this guide.

PrincipalResolver vs. AuthenticationHandler

The principal resolution machinery provided by AuthenticationHandler components should be used in preference to
PrincipalResolver in any situation where the former provides adequate functionality.
If the principal that is resolved by the authentication handler
suffices, then a null value may be passed in place of the resolver bean id in the final map.

 Remote Address Authentication

layout: default
title: CAS - Remote Address Authentication

Remote Address Authentication

This handler uses the request’s remote address to transparently authenticate a user, having verified
the address against a range of configured IP addresses. The mechanics of this approach are very similar
to X.509 certificate authentication, but trust is instead placed on the client internal network address.

The benefit of this approach is that transparent authentication is achieved within a large corporate
network without the need to manage certificates.

Be CarefulKeep in mind that this authentication
mechanism should only be enabled for internal network clients with relatively static IP addresses.

Caveats

This method of authentication assumes internal clients will be hitting the CAS server directly
and not coming via a web proxy. In the event of the client using the web proxy the likelihood
of the remote address lookup succeeding is reduced because to CAS the client address is that
of the proxy server and not the client. Given that this form of CAS authentication would typically
be deployed within an internal network this is generally not a problem.

Configuration

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-generic-remote-webflow</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

 Database Authentication

layout: default
title: CAS - Database Authentication

Database Authentication

Database authentication is enabled by including the following dependencies in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-jdbc</artifactId>
 <version>${cas.version}</version>
</dependency>

To learn how to configure database drivers, please see this guide.

Configuration

To see the relevant list of CAS properties, please review this guide.

Password Policy Enforcement

A certain number of database authentication schemes have limited support for detecting locked/disabled/etc accounts
via column names that are defined in the CAS sttings. To learn how to enforce a password policy, please review this guide.

 CAS Properties Overview

layout: default
title: CAS Properties Overview

CAS Properties Overview

This document describes a number of suggestions and configuration options that apply
to and are common amongst a selection of CAS modules and features.

To see the full list of CAS properties, please review this guide.

Naming Convention

	Settings and properties that are controlled by the CAS platform directly always begin with the prefix cas. All other settings are controlled and provided to CAS via other underlying frameworks and may have their own schemas and syntax. BE CAREFUL with the distinction.

	Unrecognized properties are generally ignored by CAS and/or frameworks upon which CAS depends. This means if you somehow misspell a property definition or fail to adhere to the dot-notation syntax and such, your setting is entirely ignored by CAS and likely the feature it controls will never be activated in the way you intend.

Indexed Settings

CAS settings able to accept multiple values are typically documented with an index, such as cas.some.setting[0]=value.
The index [0] is meant to be incremented by the adopter to allow for distinct multiple configuration blocks:

cas.some.setting[0]=value1
cas.some.setting[1]=value2

Trust But Verify

If you are unsure about the meaning of a given CAS setting, do NOT simply turn it on without hesitation.
Review the codebase or better yet, ask questions to clarify the intended behavior.

Keep It SimpleIf you do not know or cannot tell what a setting does, you do not need it.

Time Unit of Measure

All CAS settings that deal with time units, unless noted otherwise,
should support the duration syntax for full clarity on unit of measure:

"PT20S" -- parses as "20 seconds"
"PT15M" -- parses as "15 minutes"
"PT10H" -- parses as "10 hours"
"P2D" -- parses as "2 days"
"P2DT3H4M" -- parses as "2 days, 3 hours and 4 minutes"

The native numeric syntax is still supported though you will have to refer to the docs
in each case to learn the exact unit of measure.

Authentication Credential Selection

A number of authentication handlers are allowed to determine whether they can operate on the provided credential
and as such lend themselves to be tried and tested during the authentication handler selection phase. The credential criteria
may be one of the following options:

	A regular expression pattern that is tested against the credential identifier

	A fully qualified class name of your own design that looks similar to the below example:

import java.util.function.Predicate;
import org.apereo.cas.authentication.Credential;

public class PredicateExample implements Predicate<Credential> {
 @Override
 public boolean test(final Credential credential) {
 // Examine the credential and return true/false
 }
}

	Path to an external Groovy script that looks similar to the below example:

import org.apereo.cas.authentication.Credential
import java.util.function.Predicate

class PredicateExample implements Predicate<Credential> {
 @Override
 boolean test(final Credential credential) {
 // test and return result
 }
}

Password Encoding

Certain aspects of CAS such as authentication handling support configuration of
password encoding. Most options are based on Spring Security’s support for password encoding [http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/crypto/password/PasswordEncoder.html].

The following options are supported:

| Type | Description|————————-|—————————————————————————————————-
| NONE | No password encoding (i.e. plain-text) takes place.| DEFAULT | Use the DefaultPasswordEncoder of CAS. For message-digest algorithms via characterEncoding and encodingAlgorithm.
| BCRYPT | Use the BCryptPasswordEncoder based on the strength provided and an optional secret.| SCRYPT | Use the SCryptPasswordEncoder.
| PBKDF2 | Use the Pbkdf2PasswordEncoder based on the strength provided and an optional secret.| STANDARD | Use the StandardPasswordEncoder based on the secret provided.| org.example.MyEncoder | An implementation of PasswordEncoder of your own choosing.

Authentication Principal Transformation

Authentication handlers that generally deal with username-password credentials
can be configured to transform the user id prior to executing the authentication sequence.
The following options may be used:

| Type | Description
|————————-|———————————————————-
| NONE | Do not apply any transformations.
| UPPERCASE | Convert the username to uppercase.
| LOWERCASE | Convert the username to lowercase.

Hibernate & JDBC

Control global properties that are relevant to Hibernate,
when CAS attempts to employ and utilize database resources,
connections and queries.

cas.jdbc.showSql=true
cas.jdbc.genDdl=true

Container-based JDBC Connections

If you are planning to use a container-managed JDBC connection with CAS (i.e. JPA Ticket/Service Registry, etc)
then you can set the dataSourceName property on any of the configuration items that require a database
connection. When using a container configured data source, many of the pool related parameters will not be used.
If dataSourceName is specified but the JNDI lookup fails, a data source will be created with the configured
(or default) CAS pool parameters.

If you experience classloading errors while trying to use a container datasource, you can try
setting the dataSourceProxy setting to true which will wrap the container datasource in
a way that may resolve the error.

The dataSourceName property can be either a JNDI name for the datasource or a resource name prefixed with
java:/comp/env/. If it is a resource name then you need an entry in a web.xml that you can add to your
CAS overlay. It should contain an entry like this:

 <resource-ref>
 <res-ref-name>jdbc/casDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

In Apache Tomcat a container datasource can be defined like this in the context.xml:

<Resource name="jdbc/casDataSource"
 auth="Container"
 type="javax.sql.DataSource"
 driverClassName="org.postgresql.Driver"
 url="jdbc:postgresql://casdb.example.com:5432/xyz_db"
 username="cas"
 password="xyz"
 testWhileIdle="true"
 testOnBorrow="true"
 testOnReturn="false"
 validationQuery="select 1"
 validationInterval="30000"
 timeBetweenEvictionRunsMillis="30000"
 factory="org.apache.tomcat.jdbc.pool.DataSourceFactory"
 minIdle="0"
 maxIdle="5"
 initialSize="0"
 maxActive="20"
 maxWait="10000" />

In Jetty, a pool can be put in JNDI with a jetty.xml or jetty-env.xml file like this:

<?xml version="1.0"?>
<!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN" "http://www.eclipse.org/jetty/configure_9_3.dtd">

<Configure class="org.eclipse.jetty.webapp.WebAppContext">
<New id="datasource.cas" class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg></Arg> <!-- empty scope arg is JVM scope -->
 <Arg>jdbc/casDataSource</Arg> <!-- name that matches resource in web.xml-->
 <Arg>
 <New class="org.apache.commons.dbcp.BasicDataSource">
 <Set name="driverClassName">oracle.jdbc.OracleDriver</Set>
 <Set name="url">jdbc:oracle:thin:@//casdb.example.com:1521/ntrs"</Set>
 <Set name="username">cas</Set>
 <Set name="password">xyz</Set>
 <Set name="validationQuery">select dummy from dual</Set>
 <Set name="testOnBorrow">true</Set>
 <Set name="testOnReturn">false</Set>
 <Set name="testWhileIdle">false</Set>
 <Set name="defaultAutoCommit">false</Set>
 <Set name="initialSize">0</Set>
 <Set name="maxActive">15</Set>
 <Set name="minIdle">0</Set>
 <Set name="maxIdle">5</Set>
 <Set name="maxWait">2000</Set>
 </New>
 </Arg>
</New>
</Configure>

Signing & Encryption

A number of components in CAS accept signing and encryption keys. In most scenarios if keys are not provided, CAS will auto-generate them. The following instructions apply if you wish to
manually and beforehand create the signing and encryption keys.

Note that if you are asked to create a JWK [https://tools.ietf.org/html/rfc7517]
of a cerain size for the key, you are to use the following set of commands to generate the token:

wget https://raw.githubusercontent.com/apereo/cas/master/etc/jwk-gen.jar
java -jar jwk-gen.jar -t oct -s [size]

DDL Configuration

Note that the default value for Hibernate’s DDL setting is create-drop
which may not be appropriate for use in production. Setting the value to
validate may be more desirable, but any of the following options can be used:

| Type | Description|———————-|———————————————————-
| validate | Validate the schema, but make no changes to the database.
| update | Update the schema.
| create | Create the schema, destroying previous data.
| create-drop | Drop the schema at the end of the session.

For more information on configuration of transaction levels and propagation behaviors,
please review this guide [http://docs.spring.io/spring-framework/docs/current/javadoc-api/].

 Overview

layout: default
title: CAS - User Interface Customization

Overview

Branding the CAS User Interface (UI) involves simply editing the CSS stylesheet and also a small collection of relatively simple HTML
include files, also known as views. Optionally, you may also wish to modify the text displayed and/or add additional Javascript effects
on these views.

Browser Support

CAS user interface should properly and comfortably lend itself to all major browser vendors:

	Google Chrome

	Mozilla Firefox

	Apple Safari

	Microsoft Internet Explorer

Note that certain older version of IE, particularly IE 9 and below may impose additional difficulty in getting the right UI configuration in place.

Internet Explorer

To instruct CAS to render UI in compatibility mode, add the following to relevant UI components:

<meta http-equiv="X-UA-Compatible" content="IE=edge"></meta>

CSS & Javascript

See this guide for more info.

Views

See this guide for more info.

Localization

See this guide for more info.

Themes

See this guide for more info.

 Ticket Registry Replication Encryption

layout: default
title: CAS - Configuring Ticketing Components

Ticket Registry Replication Encryption

The following ticket registries are able to support secure ticket replication
by encrypting and signing tickets:

	Hazelcast

	Ehcache

	Ignite

	Memcached

Default BehaviorEncryption by default is turned off
when you use the above ticket registries. It requires explicit configuration before it can be used.

Configuration

Each ticket registry configuration supports a cipher component that needs to be configured by the deployer.
The settings, algorithms and secret keys used for the cipher may be controlled via CAS settings.
Refer to the settings allotted for each registry to learn more about ticket encryption.

Additionally, Ignite may be configured to use TLS for replication transport.

 Webflow Customization

layout: default
title: CAS - Webflow Customization

Webflow Customization

CAS uses Spring Webflow [http://projects.spring.io/spring-webflow] to do “script” processing of login and logout protocols.
Spring Web Flow builds on Spring MVC and allows implementing the “flows” of a web application. A flow encapsulates a sequence
of steps that guide a user through the execution of some business task. It spans multiple HTTP requests, has state, deals with
transactional data, is reusable, and may be dynamic and long-running in nature. Each flow may contain among many other settings the following major elements:

	Actions: components that describe an executable task and return back a result

	Transitions: Routing the flow from one state to another; Transitions may be global to the entire flow.

	Views: Components that describe the presentation layer displayed back to the client

	Decisions: Components that conditionally route to other areas of flow and can make logical decisions

Spring Web Flow presents CAS with a pluggable architecture where custom actions, views and decisions may be injected into the
flow to account for additional use cases and processes. Note that to customize the webflow, one must possess a reasonable level of understanding of the webflow’s internals and injection policies. The intention of this document is NOT to describe Spring Web Flow, but merely to demonstrate how the framework is used by CAS to carry out various aspects of the protocol and business logic execution.

Webflow Session

See this guide for more info.

Webflow Auto Configuration

Most CAS modules, when declared as a dependency, attempt to autoconfigure the CAS webflow to suit their needs.
This practically means that the CAS adopter would no longer have to manually massage the CAS webflow configuration,
and the module automatically takes care of all required changes. While this is the default behavior, it is possible that
you may want to manually handle all such changes. For doing so, you will need to disable the CAS autoconfiguration
of the webflow.

To see the relevant list of CAS properties, please review this guide.

Achtung, liebe Leser!Only attempt to
modify the Spring webflow configuration files by hand when/if absolutely necessary and the
change is rather minimal or decorative. Extensive modifications of the webflow, if not done carefully
may serverely complicate your deployment and future upgrades. If reasonable, consider contributing or
suggesting the change to the project and have it be maintained directly.

CAS by default is configured to hot reload changes to the Spring webflow configuration.
The following setting switches on flow development mode. Development mode switches
on hot-reloading of flow definition changes, including changes to dependent flow resources such as message bundles.

Extending Webflow

If you want to learn how to modify and extend the CAS authentication flows, please see this guide.

Required Service for Authentication

By default, CAS will present a generic success page if the initial authentication request does not identify
the target application. In some cases, the ability to login to CAS without logging
in to a particular service may be considered a misfeature because in practice, too few users and institutions
are prepared to understand, brand, and support what is at best a fringe use case of logging in to CAS for the
sake of establishing an SSO session without logging in to any CAS-reliant service.

As such, CAS optionally allows adopters to not bother to prompt for credentials when no target application is presented
and instead presents a message when users visit CAS directly without specifying a service.

To see the relevant list of CAS properties, please review this guide.

Acceptable Usage Policy

CAS presents the ability to allow the user to accept the usage policy before moving on to the application.
See this guide for more info.

Customizing errors

See this guide for more info.

 Acceptable Usage Policy

layout: default
title: CAS - Web Flow Acceptable Usage Policy

Acceptable Usage Policy

CAS presents the ability to allow the user to accept the usage policy before moving on to the application.
Production-level deployments of this feature would require modifications to the flow such that the retrieval
and/or acceptance of the policy would be handled via an external storage mechanism such as LDAP or JDBC.

Configuration

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-actions-aup-webflow</artifactId>
 <version>${cas.version}</version>
</dependency>

Customize the policy by modifying the src/main/resources/casAcceptableUsagePolicyView.html. See this guide
to learn more about user interface customizations. Note that the view here should have full access to the resolved principal and attributes,
if you wish to dynamically alter the page to present different text, etc.

To see the relevant list of CAS properties, please review this guide.

Storage Mechanism

Usage policy user decisions are stored and rememberd via the following ways.

Default

By default the task of remembering the user’s choice is kept in memory by default and will be lost upon
container restarts and/or in clustered deployments.

LDAP

Alternatively, CAS can be configured to use LDAP as the storage mechanism. This option allows the deployer
to detect the current user’s policy choice via a CAS single-valued boolean attribute.
The attribute must be resolved using
the CAS attribute resolution strategy.
If the attribute contains a value of false, CAS will attempt to
ask for policy acceptance. Upon accepting the policy, the result will be stored back into LDAP and
remembered via the same attribute.

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-actions-aup-ldap</artifactId>
 <version>${cas.version}</version>
</dependency>

 YAML Service Registry

layout: default
title: CAS - YAML Service Registry

YAML Service Registry

This registry reads services definitions from YAML configuration files at the application context initialization time.
YAML files are expected to be found inside a configured directory location and this registry will recursively look through
the directory structure to find relevant files.

Support is enabled by adding the following module into the Maven overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-yaml-service-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

A sample YAML file follows:

--- !<org.apereo.cas.services.RegexRegisteredService>
serviceId: "testId"
name: "YAML"
id: 1000
description: "description"
attributeReleasePolicy: !<org.apereo.cas.services.ReturnAllAttributeReleasePolicy>
accessStrategy: !<org.apereo.cas.services.DefaultRegisteredServiceAccessStrategy>
 enabled: true
 ssoEnabled: true

Clustering Services
You MUST consider that if your CAS server deployment is clustered, each CAS node in the cluster must have
access to the same set of configuration files as the other, or you may have to devise a strategy to keep
changes synchronized from one node to the next.

The service registry is also able to auto detect changes to the specified directory. It will monitor changes to recognize
file additions, removals and updates and will auto-refresh CAS so changes do happen instantly.

Escaping Characters
Please make sure all field values in the blob are correctly escaped, specially for the service id. If the service is defined as a regular expression, certain regex constructs such as "." and "\d" need to be doubly escaped.

The naming convention for new files is recommended to be the following:

YAML fileName = serviceName + "-" + serviceNumericId + ".yml"

Remember that because files are created based on the serviceName, you will need to make sure characters considered invalid for file names [https://en.wikipedia.org/wiki/Filename#Reserved_characters_and_words] are not used as part of the name.

Duplicate Services
As you add more files to the directory, you need to be absolutely sure that no two service definitions
will have the same id. If this happens, loading one definition will stop loading the other. While service ids
can be chosen arbitrarily, make sure all service numeric identifiers are unique. CAS will also output warnings
if duplicate data is found.

Auto Initialization

Upon startup and configuration permitting,
the registry is able to auto initialize itself from default
JSON service definitions available to CAS.

To see the relevant list of CAS properties, please review this guide.

 Graphical User Authentication

layout: default
title: CAS - GUA Authentication

Graphical User Authentication

Graphical user authentication, sometimes also known as ‘login images’ are a form of login verification (i.e. second factor) where a site presents the user with an image previously selected by the user at the time the account is created. It is an “account secret” tied to the username that should not be easily reproduced by a phishing campaign attempting to impersonate a legitimate website.

In practice, CAS prompts the user for only their username and responds with a page displaying what should be the user’s pre-selected image along with a password field to complete their authentication. The user in turn is to be trained to refuse submitting the rest of their login credentials to a site posing to be legitimate if CAS fails to present the correct image.

Overview

Support is enabled by including the following module in the overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-gua</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Resource

Primarily useful for demo and testing purposes, this option allows CAS to load a global and static image resource
as the user identifier onto the login flow.

LDAP

CAS may also be allowed to locate a binary image attribute for the user from LDAP. The binary attribute value is then loaded
as the user identifier onto the login flow.

 Memcached Ticket Registry

layout: default
title: CAS - Memcached Ticket Registry

Memcached Ticket Registry

Memcached integration is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-memcached-ticket-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

MemCacheTicketRegistry stores tickets in one or more memcached [http://memcached.org/] instances. The
spymemcached [https://code.google.com/p/spymemcached/] library used by this component presents memcached as a
key/value store that accepts String keys and Java Object values.
Memcached stores data in exactly one node among many in a distributed cache, thus avoiding the requirement to replicate
or otherwise share data between nodes. A deterministic function is used to locate the node, N’, on which to store
key K:

N' = f(h(K), N1, N2, N3, ... Nm)

where h(K) is the hash of key K, N1 ... Nm is the set of cache nodes, and N’ ∈ N ... Nm.

The function is deterministic in that it consistently produces the same result for a given key and set of cache nodes.
Note that a change in the set of available cache nodes may produce a different target node on which to store the key.

Configuration Considerations

There are three core configuration concerns with memcached:

	Hash Algorithm

	Node locator strategy

	Object serialization mechanism

Hash Algorithm

The hash algorithm is used to transform a key value into a memcached storage key that uniquely identifies the
corresponding value. The choice of hashing algorithm has implications for failover behavior that is important
for HA deployments. The FNV1_64_HASH algorithm is recommended since it offers a nice balance of speed and low
collision rate; see the
javadocs [https://github.com/couchbase/spymemcached/blob/2.8.1/src/main/java/net/spy/memcached/DefaultHashAlgorithm.java]
for alternatives.

Node Locator

The node locator serves as the deterministic node selection function for the memcached client provided by the
underlying spymemcached library. There are two choices:

	ARRAY_MOD [https://github.com/couchbase/spymemcached/blob/2.8.1/src/main/java/net/spy/memcached/ArrayModNodeLocator.java]

	CONSISTENT [https://github.com/couchbase/spymemcached/blob/2.9.0/src/main/java/net/spy/memcached/KetamaNodeLocator.java]

The array modulus mechanism is the default and suitable for cases when the number of nodes in the memcached pool is
expected to be consistent. The algorithm simply computes an index into the array of memcached nodes:

hash(key) % length(nodes)

Obviously the selected index is a function of the number of memcached nodes, so variance in number of nodes produces
variance in the node selected to store the key, which is undesirable.

The consistent strategy generally provides a target node that does not vary with the number of nodes. This strategy
should be used in cases where the memcached pool may grow or shrink dynamically, including due to frequent node
failure.

Object Serialization

Memcached stores bytes of data, so CAS tickets must be serialized to a byte array prior to storage. CAS ships with
a custom serialization component KryoTranscoder based on the Kryo [https://code.google.com/p/kryo/] serialization
framework. This component is recommended over the default Java serialization mechanism since it produces much more
compact data, which benefits both storage requirements and throughput.

Configuration

To see the relevant list of CAS properties, please review this guide.

High Availability Considerations

Memcached does not provide for replication by design, but the client is tolerant to node failures with
failureMode="Redistribute". In this mode a write failure will simply cause the client to flag the node as failed
and remove it from the set of available nodes. It subsequently recomputes the node location function with the reduced
node set to find a new node on which to store the key. If the node location function selects the same node,
which is likely for the CONSISTENT strategy, a backup node will be computed. The value is written to and read from
the failover node until the primary node recovers. The client will periodically check the failed node for liveliness
and restore it to the node pool as soon as it recovers. When the primary node is resurrected, if it contains a value
for a particular key, it would supercede the value known to the failover node. The most common effect on CAS behavior
in this circumstance would occur when ticket-granting tickets have duplicate values, which could affect single sign-out
and prevent access to services. In particular, services accessed and forced authentications that occur while the
failover service is active would be lost when the failed node recovers. In most cases this behavior is tolerable,
but it can be avoided by restarting the memcached service on the failed node prior to rejoining the cache pool.

A read failure in Redistribute mode causes the node to be removed from the set of available nodes, a failover node
is computed, and a value is read from that node. In most cases this results in a key not found situation. The effect
on CAS behavior depends on the type of ticket requested:

	Service ticket - Service access would be denied for the requested ticket, but permitted for subsequent attempts since
a new ticket would be generated and validated.

	Ticket-granting ticket - The SSO session would be terminated and reauthentication would be required.

Read failures are thus entirely innocuous for environments where reauthentication is acceptable.

 CAS Properties

layout: default
title: CAS Properties

CAS Properties

Various properties can be specified in CAS either inside configuration files or as command
line switches. This section provides a list common CAS properties and
references to the underlying modules that consume them.

Be Selective
This section is meant as a guide only. Do NOT copy/paste the entire collection of settings into your CAS configuration; rather pick only the properties that you need.

Note that property names can be specified
in very relaxed terms. For instance cas.someProperty, cas.some-property, cas.some_property
and CAS_SOME_PROPERTY are all valid names.

The following list of properties are controlled by and provided to CAS. Each block, for most use cases, corresponds
to a specific CAS module that is expected to be included in the final CAS distribution prepared during the build
and deployment process.

YAGNINote that for nearly ALL use cases,
simply declaring and configuring properties listed below is sufficient. You should NOT have to
explicitly massage a CAS XML configuration file to design an authentication handler,
create attribute release policies, etc. CAS at runtime will auto-configure all required changes for you.

General

A number of CAS configuration options equally apply to a number of modules and features. To understand and take note of those options, please review this guide.

Configuration Storage

Standalone

CAS by default will attempt to locate settings and properties inside a given directory indicated
under the setting name cas.standalone.config and otherwise falls back to using /etc/cas/config.

There also exists a cas.standalone.config.file which can be used to directly feed a collection of properties
to CAS in form of a file or classpath resource. This is specially useful in cases where a bare CAS server is deployed in the cloud without the extra ceremony of a configuration server or an external directory for that matter and the deployer wishes to avoid overriding embedded configuration files.

Spring Cloud

The following settings are to be loaded by the CAS configuration runtime, which bootstraps
the entire CAS running context. They are to be put inside the src/main/resources/bootstrap.properties
of the configuration server itself. See this guide for more info.

The configuration server backed by Spring Cloud supports the following profiles.

Native

Load settings from external properties/yaml configuration files.

spring.profiles.active=native

The configuration directory where CAS should monitor to locate settings.
spring.cloud.config.server.native.searchLocations=file:///etc/cas/config

Git Repository

Load settings from an internal/external Git repository.

spring.profiles.active=default

The location of the git repository that contains CAS settings.
The location can point to an HTTP/SSH/directory.
spring.cloud.config.server.git.uri=https://github.com/repoName/config
spring.cloud.config.server.git.uri=file://${user.home}/config

The credentials used to authenticate git requests, specially
when using HTTPS. If connecting to the repository via SSH, remember
to register your public keys with an SSH agent just as your normal would have
with any other public repository.
spring.cloud.config.server.git.username=
spring.cloud.config.server.git.password=

The above configuration also applies to online git-based repositories such as Github, BitBucket, etc.

Vault

Load settings from HasiCorp’s Vault.

spring.cloud.vault.host=127.0.0.1
spring.cloud.vault.port=8200
spring.cloud.vault.token=1305dd6a-a754-f145-3563-2fa90b0773b7
spring.cloud.vault.connectionTimeout=3000
spring.cloud.vault.readTimeout=5000
spring.cloud.vault.enabled=true
spring.cloud.vault.fail-fast=true
spring.cloud.vault.scheme=http
spring.cloud.vault.generic.enabled=true
spring.cloud.vault.generic.backend=secret

MongoDb

Load settings from a MongoDb instance.

cas.spring.cloud.mongo.uri=mongodb://casuser:Mellon@ds061954.mongolab.com:61954/apereocas

ZooKeeper

Load settings from an Apache ZooKeeper instance.

spring.cloud.zookeeper.connectString=localhost:2181
spring.cloud.zookeeper.enabled=true
spring.cloud.zookeeper.config.enabled=true
spring.cloud.zookeeper.maxRetries=10
spring.cloud.zookeeper.config.root=cas/config

DynamoDb

Load settings from a DynamoDb instance.

cas.spring.cloud.dynamodb.credentialAccessKey=
cas.spring.cloud.dynamodb.credentialSecretKey=
cas.spring.cloud.dynamodb.endpoint=http://localhost:8000
cas.spring.cloud.dynamodb.localAddress=
cas.spring.cloud.dynamodb.endpoint=
cas.spring.cloud.dynamodb.region=
cas.spring.cloud.dynamodb.regionOverride=

JDBC

Load settings from a RDBMS instance.

cas.spring.cloud.jdbc.sql=SELECT id, name, value FROM CAS_SETTINGS_TABLE
cas.spring.cloud.jdbc.url=
cas.spring.cloud.jdbc.user=
cas.spring.cloud.jdbc.password=
cas.spring.cloud.jdbc.driverClass=

Configuration Security

To learn more about how sensitive CAS settings can be
secured, please review this guide.

Standalone

cas.standalone.config.security.alg=PBEWithMD5AndTripleDES
cas.standalone.config.security.provider=BC
cas.standalone.config.security.iterations=
cas.standalone.config.security.psw=

The above settings may be passed to CAS using any of the strategies outline here,
though it might be more secure to pass them to CAS as either command-line or system properties.

Spring Cloud

Encrypt and decrypt configuration via Spring Cloud, if the Spring Cloud configuration server is used.

spring.cloud.config.server.encrypt.enabled=true

encrypt.keyStore.location=file:///etc/cas/casconfigserver.jks
encrypt.keyStore.password=keystorePassword
encrypt.keyStore.alias=DaKey
encrypt.keyStore.secret=changeme

Cloud Configuration Bus

CAS uses the Spring Cloud Bus to manage configuration in a distributed deployment. Spring Cloud Bus links nodes of a
distributed system with a lightweight message broker.

spring.cloud.bus.enabled=false
spring.cloud.bus.refresh.enabled=true
spring.cloud.bus.env.enabled=true
spring.cloud.bus.destination=CasCloudBus
spring.cloud.bus.ack.enabled=true

To learn more about this topic, please review this guide.

RabbitMQ

Broadcast CAS configuration updates to other nodes in the cluster
via RabbitMQ [http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_rabbitmq_binder].

spring.rabbitmq.host=
spring.rabbitmq.port=
spring.rabbitmq.username=
spring.rabbitmq.password=

Or all of the above in one line
spring.rabbitmq.addresses=

Kafka

Broadcast CAS configuration updates to other nodes in the cluster
via Kafka [http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_apache_kafka_binder].

spring.cloud.stream.bindings.output.content-type=application/json
spring.cloud.stream.kafka.binder.zkNodes=...
spring.cloud.stream.kafka.binder.brokers=...

Embedded Container

The following properties are related to the embedded containers that ship with CAS.

server.contextPath=/cas

By default and if you remove this setting, CAS runs on port 8080
server.port=8443

To disable SSL configuration, comment out the following settings
Or set to blank values.
server.ssl.keyStore=file:/etc/cas/thekeystore
server.ssl.keyStorePassword=changeit
server.ssl.keyPassword=changeit
server.ssl.ciphers=
server.ssl.clientAuth=
server.ssl.enabled=
server.ssl.keyAlias=
server.ssl.keyStoreProvider=
server.ssl.keyStoreType=
server.ssl.protocol=
server.ssl.trustStore=
server.ssl.trustStorePassword=
server.ssl.trustStoreProvider=
server.ssl.trustStoreType=

server.maxHttpHeaderSize=2097152
server.useForwardHeaders=true
server.connectionTimeout=20000

Embedded Tomcat Container

server.tomcat.basedir=build/tomcat

server.tomcat.accesslog.enabled=true
server.tomcat.accesslog.pattern=%t %a "%r" %s (%D ms)
server.tomcat.accesslog.suffix=.log

server.tomcat.maxHttpPostSize=20971520
server.tomcat.maxThreads=5
server.tomcat.portHeader=X-Forwarded-Port
server.tomcat.protocolHeader=X-Forwarded-Proto
server.tomcat.protocolHeaderHttpsValue=https
server.tomcat.remoteIpHeader=X-FORWARDED-FOR
server.tomcat.uriEncoding=UTF-8

HTTP Proxying

In the event that you decide to run CAS without any SSL configuration in the embedded Tomcat container and on a non-secure port
yet wish to customize the connector configuration that is linked to the running port (i.e. 8080), the following settings may apply:

cas.server.httpProxy.enabled=true
cas.server.httpProxy.secure=true
cas.server.httpProxy.protocol=AJP/1.3
cas.server.httpProxy.scheme=https
cas.server.httpProxy.redirectPort=
cas.server.httpProxy.proxyPort=
cas.server.httpProxy.attributes.attributeName=attributeValue

HTTP

Enable HTTP connections for the embedded Tomcat container, in addition to the configuration
linked to the server.port setting.

cas.server.http.port=8080
cas.server.http.protocol=org.apache.coyote.http11.Http11NioProtocol
cas.server.http.enabled=true
cas.server.http.attributes.attributeName=attributeValue

AJP

Enable AJP connections for the embedded Tomcat container,

cas.server.ajp.secure=false
cas.server.ajp.enabled=false
cas.server.ajp.proxyPort=-1
cas.server.ajp.protocol=AJP/1.3
cas.server.ajp.asyncTimeout=5000
cas.server.ajp.scheme=http
cas.server.ajp.maxPostSize=20971520
cas.server.ajp.port=8009
cas.server.ajp.enableLookups=false
cas.server.ajp.redirectPort=-1
cas.server.ajp.allowTrace=false
cas.server.ajp.attributes.attributeName=attributeValue

SSL Valve

The Tomcat SSLValve is a way to get a client certificate from an SSL proxy (e.g. HAProxy or BigIP F5)
running in front of Tomcat via an HTTP header. If you enable this, make sure your proxy is ensuring
that this header doesn’t originate with the client (e.g. the browser).

cas.server.sslValve.enabled=false
cas.server.sslValve.sslClientCertHeader=ssl_client_cert
cas.server.sslValve.sslCipherHeader=ssl_cipher
cas.server.sslValve.sslSessionIdHeader=ssl_session_id
cas.server.sslValve.sslCipherUserKeySizeHeader=ssl_cipher_usekeysize

Example HAProxy Configuration (snippet)
Configure SSL frontend with cert optional, redirect to cas, if cert provided, put it on header

frontend web-vip
 bind 192.168.2.10:443 ssl crt /var/lib/haproxy/certs/www.example.com.pem ca-file /var/lib/haproxy/certs/ca.pem verify optional
 mode http
 acl www-cert ssl_fc_sni if { www.example.com }
 acl empty-path path /
 http-request redirect location /cas/ if empty-path www-cert
 http-request del-header ssl_client_cert unless { ssl_fc_has_crt }
 http-request set-header ssl_client_cert -----BEGIN\ CERTIFICATE-----\ %[ssl_c_der,base64]\ -----END\ CERTIFICATE-----\ if { ssl_fc_has_crt }
 acl cas-path path_beg -i /cas
 reqadd X-Forwarded-Proto:\ https
 use_backend cas-pool if cas-path

backend cas-pool
 option httpclose
 option forwardfor
 cookie SERVERID-cas insert indirect nocache
 server cas-1 192.168.2.10:8080 check cookie cas-1

Extended Access Log Valve

Enable the extended access log [https://tomcat.apache.org/tomcat-8.0-doc/api/org/apache/catalina/valves/ExtendedAccessLogValve.html]
for the embedded Tomcat container.

cas.server.extAccessLog.enabled=false
cas.server.extAccessLog.pattern=c-ip s-ip cs-uri sc-status time X-threadname x-H(secure) x-H(remoteUser)
cas.server.extAccessLog.suffix=.log
cas.server.extAccessLog.prefix=localhost_access_extended
cas.server.extAccessLog.directory=

CAS Server

Identify the CAS server. name and prefix are always required settings.

A CAS host is automatically appended to the ticket ids generated by CAS.
If none is specified, one is automatically detected and used by CAS.

cas.server.name=https://cas.example.org:8443
cas.server.prefix=https://cas.example.org:8443/cas
cas.host.name=

CAS Banner

On startup, CAS will display a banner along with some diagnostics info.
In order to skip this step and summarize, set the system property -DCAS_BANNER_SKIP=true.

Spring Boot Endpoints

The following properties describe access controls and settings for the /status
endpoint of CAS which provides administrative functionality and oversight into the CAS software. These endpoints are specific to Spring Boot.

To learn more about this topic, please review this guide.

Globally control whether endpoints are enabled
or marked as sesitive to require authentication.
endpoints.enabled=true
endpoints.sensitive=true

management.contextPath=/status
management.security.enabled=true
management.security.roles=ACTUATOR,ADMIN
management.security.sessions=if_required

Each of the below endpoints can either be disabled
or can be marked as 'sensitive' (or not)
to enable authentication. The global flags above control
everything and individual settings below act as overrides.

endpoints.restart.enabled=false
endpoints.shutdown.enabled=false
endpoints.autoconfig.enabled=true
endpoints.beans.enabled=true
endpoints.bus.enabled=true
endpoints.configprops.enabled=true
endpoints.dump.enabled=true
endpoints.env.enabled=true
endpoints.health.enabled=true
endpoints.features.enabled=true
endpoints.info.enabled=true
endpoints.loggers.enabled=true
endpoints.logfile.enabled=true
endpoints.trace.enabled=true
endpoints.docs.enabled=false
endpoints.heapdump.enabled=true

IP address may be enough to protect all endpoints.
If you wish to protect the admin pages via CAS itself, configure the rest.
cas.adminPagesSecurity.ip=127\.0\.0\.1
cas.adminPagesSecurity.loginUrl=https://sso.example.org/cas/login
cas.adminPagesSecurity.service=https://sso.example.org/cas/status/dashboard
cas.adminPagesSecurity.users=file:/etc/cas/config/adminusers.properties
cas.adminPagesSecurity.adminRoles[0]=ROLE_ADMIN

cas.adminPagesSecurity.actuatorEndpointsEnabled=true

The format of the adminusers.properties file which houses a list of authorized users to access the admin pages via CAS is:

casuser=notused,ROLE_ADMIN

The format of the file is as such:

	casuser: This is the authenticated user id received from CAS

	notused: This is the password field that isn’t used by CAS. You could literally put any value you want in its place.

	ROLE_ADMIN: Role assigned to the authorized user as an attribute, which is then cross checked against CAS configuration.

Spring Boot Admin Server

To learn more about this topic, please review this guide.

spring.boot.admin.url=https://bootadmin.example.org:8444
spring.boot.admin.client.managementUrl=${cas.server.prefix}/status
spring.boot.admin.client.name=Apereo CAS
spring.boot.admin.client.metadata.user.name=
spring.boot.admin.client.metadata.user.password=

CAS Endpoints

These are the collection of endpoints that are specific to CAS.
To learn more about this topic, please review this guide.

cas.monitor.endpoints.enabled=false
cas.monitor.endpoints.sensitive=true

cas.monitor.endpoints.dashboard.enabled=false
cas.monitor.endpoints.dashboard.sensitive=true

cas.monitor.endpoints.auditEvents.enabled=false
cas.monitor.endpoints.auditEvents.sensitive=true

cas.monitor.endpoints.authenticationEvents.enabled=false
cas.monitor.endpoints.authenticationEvents.sensitive=true

cas.monitor.endpoints.configurationState.enabled=false
cas.monitor.endpoints.configurationState.sensitive=true

cas.monitor.endpoints.healthCheck.enabled=false
cas.monitor.endpoints.healthCheck.sensitive=true

cas.monitor.endpoints.loggingConfig.enabled=false
cas.monitor.endpoints.loggingConfig.sensitive=true

cas.monitor.endpoints.metrics.enabled=false
cas.monitor.endpoints.metrics.sensitive=true

cas.monitor.endpoints.attributeResolution.enabled=false
cas.monitor.endpoints.attributeResolution.sensitive=true

cas.monitor.endpoints.singleSignOnReport.enabled=false
cas.monitor.endpoints.singleSignOnReport.sensitive=true

cas.monitor.endpoints.statistics.enabled=false
cas.monitor.endpoints.statistics.sensitive=true

cas.monitor.endpoints.trustedDevices.enabled=false
cas.monitor.endpoints.trustedDevices.sensitive=true

cas.monitor.endpoints.status.enabled=false
cas.monitor.endpoints.status.sensitive=true

cas.monitor.endpoints.singleSignOnStatus.enabled=false
cas.monitor.endpoints.singleSignOnStatus.sensitive=true

cas.monitor.endpoints.springWebflowReport.enabled=false
cas.monitor.endpoints.springWebflowReport.sensitive=true

Securing Endpoints With Spring Security

Monitoring endpoints may also be secured by Spring Security. You can define the authentication scheme/paths via the below settings.

security.ignored[0]=/**
security.filterOrder=0
security.requireSsl=true
security.sessions=if_required
security.user.name=<predefined-userid>
security.user.password=<predefined-password>
security.user.role=ACTUATOR

Basic Authentication

security.basic.authorizeMode=none|role|authenticated
security.basic.enabled=true
security.basic.path=/cas/status/**
security.basic.realm=CAS

JAAS Authentication

cas.adminPagesSecurity.jaas.loginConfig=file:/path/to/config
cas.adminPagesSecurity.jaas.refreshConfigurationOnStartup=true
cas.adminPagesSecurity.jaas.loginContextName=

JDBC Authentication

cas.adminPagesSecurity.jdbc.query=SELECT username,password,enabled FROM users WHERE username=?
cas.adminPagesSecurity.jdbc.healthQuery=
cas.adminPagesSecurity.jdbc.isolateInternalQueries=false
cas.adminPagesSecurity.jdbc.url=jdbc:hsqldb:mem:cas-hsql-database
cas.adminPagesSecurity.jdbc.failFast=true
cas.adminPagesSecurity.jdbc.isolationLevelName=ISOLATION_READ_COMMITTED
cas.adminPagesSecurity.jdbc.dialect=org.hibernate.dialect.HSQLDialect
cas.adminPagesSecurity.jdbc.leakThreshold=10
cas.adminPagesSecurity.jdbc.propagationBehaviorName=PROPAGATION_REQUIRED
cas.adminPagesSecurity.jdbc.batchSize=1
cas.adminPagesSecurity.jdbc.user=sa
cas.adminPagesSecurity.jdbc.ddlAuto=create-drop
cas.adminPagesSecurity.jdbc.maxAgeDays=180
cas.adminPagesSecurity.jdbc.password=
cas.adminPagesSecurity.jdbc.autocommit=false
cas.adminPagesSecurity.jdbc.driverClass=org.hsqldb.jdbcDriver
cas.adminPagesSecurity.jdbc.idleTimeout=5000
cas.adminPagesSecurity.jdbc.dataSourceName=
cas.adminPagesSecurity.jdbc.dataSourceProxy=false

LDAP Authentication

cas.adminPagesSecurity.ldap.type=AD|AUTHENTICATED|DIRECT|ANONYMOUS

cas.adminPagesSecurity.ldap.ldapUrl=ldaps://ldap1.example.edu ldaps://ldap2.example.edu
cas.adminPagesSecurity.ldap.connectionStrategy=
cas.adminPagesSecurity.ldap.useSsl=true
cas.adminPagesSecurity.ldap.useStartTls=false
cas.adminPagesSecurity.ldap.connectTimeout=5000
cas.adminPagesSecurity.ldap.baseDn=dc=example,dc=org
cas.adminPagesSecurity.ldap.userFilter=cn={user}
cas.adminPagesSecurity.ldap.subtreeSearch=true
cas.adminPagesSecurity.ldap.bindDn=cn=Directory Manager,dc=example,dc=org
cas.adminPagesSecurity.ldap.bindCredential=Password

cas.adminPagesSecurity.ldap.enhanceWithEntryResolver=true
cas.adminPagesSecurity.ldap.dnFormat=uid=%s,ou=people,dc=example,dc=org
cas.adminPagesSecurity.ldap.principalAttributePassword=password

cas.adminPagesSecurity.ldap.saslMechanism=GSSAPI|DIGEST_MD5|CRAM_MD5|EXTERNAL
cas.adminPagesSecurity.ldap.saslRealm=EXAMPLE.COM
cas.adminPagesSecurity.ldap.saslAuthorizationId=
cas.adminPagesSecurity.ldap.saslMutualAuth=
cas.adminPagesSecurity.ldap.saslQualityOfProtection=

cas.adminPagesSecurity.ldap.trustCertificates=
cas.adminPagesSecurity.ldap.keystore=
cas.adminPagesSecurity.ldap.keystorePassword=
cas.adminPagesSecurity.ldap.keystoreType=JKS|JCEKS|PKCS12

cas.adminPagesSecurity.ldap.poolPassivator=NONE|CLOSE|BIND
cas.adminPagesSecurity.ldap.minPoolSize=3
cas.adminPagesSecurity.ldap.maxPoolSize=10
cas.adminPagesSecurity.ldap.validateOnCheckout=true
cas.adminPagesSecurity.ldap.validatePeriodically=true
cas.adminPagesSecurity.ldap.validatePeriod=600
cas.adminPagesSecurity.ldap.validateTimeout=5000

cas.adminPagesSecurity.ldap.ldapAuthz.groupAttribute=
cas.adminPagesSecurity.ldap.ldapAuthz.groupPrefix=
cas.adminPagesSecurity.ldap.ldapAuthz.groupFilter=
cas.adminPagesSecurity.ldap.ldapAuthz.rolePrefix=ROLE_
cas.adminPagesSecurity.ldap.ldapAuthz.roleAttribute=uugid

Web Application Session

Control the CAS web application session behavior
as it’s treated by the underlying servlet container engine.

server.session.timeout=300
server.session.cookie.httpOnly=true
server.session.trackingModes=COOKIE

Views

Control how CAS should treat views and other UI elements.

To learn more about this topic, please review this guide.

spring.thymeleaf.encoding=UTF-8

Controls whether views should be cached by CAS.
When turned on, ad-hoc chances to views are not automatically
picked up by CAS until a restart. Small incremental performance
improvements are to be expected.
spring.thymeleaf.cache=true

Instruct CAS to locate views at the below location.
This location can be externalized to a directory outside
the cas web application.
spring.thymeleaf.prefix=classpath:/templates/

Indicate where core CAS-protocol related views should be found
in the view directory hierarchy.
cas.view.cas2.success=protocol/2.0/casServiceValidationSuccess
cas.view.cas2.failure=protocol/2.0/casServiceValidationFailure
cas.view.cas2.proxy.success=protocol/2.0/casProxySuccessView
cas.view.cas2.proxy.failure=protocol/2.0/casProxyFailureView
cas.view.cas3.success=protocol/3.0/casServiceValidationSuccess
cas.view.cas3.failure=protocol/3.0/casServiceValidationFailure

Defines a default URL to which CAS may redirect if there is no service
provided in the authentication request.
cas.view.defaultRedirectUrl=https://www.github.com

Logging

Control the location and other settings of the CAS logging configuration.
To learn more about this topic, please review this guide.

logging.config=file:/etc/cas/log4j2.xml
server.contextParameters.isLog4jAutoInitializationDisabled=true

Control log levels via properties
logging.level.org.apereo.cas=DEBUG

To disable log sanitization, start the container with the system property CAS_TICKET_ID_SANITIZE_SKIP=true.

AspectJ Configuration

spring.aop.auto=true
spring.aop.proxyTargetClass=true

Authentication Attributes

Set of authentication attributes that are retrieved by the principal resolution process,
typically via some component of [Person Directory](..\integration\Attribute-Resolution.html)
from a number of attribute sources unless noted otherwise by the specific authentication scheme.

If multiple attribute repository sources are defined, they are added into a list
and their results are cached and merged.

cas.authn.attributeRepository.expireInMinutes=30
cas.authn.attributeRepository.maximumCacheSize=10000
cas.authn.attributeRepository.merger=REPLACE|ADD|MERGE

Remember ThisNote that in certain cases,
CAS authentication is able to retrieve and resolve attributes from the authentication source in the same authentication request, which would
eliminate the need for configuring a separate attribute repository specially if both the authentication and the attribute source are the same.
Using separate repositories should be required when sources are different, or when there is a need to tackle more advanced attribute
resolution use cases such as cascading, merging, etc.
See this guide for more info.

Attributes for all sources are defined in their own individual block.
CAS does not care about the source owner of attributes. It finds them where they can be found and otherwise, it moves on.
This means that certain number of attributes can be resolved via one source and the remaining attributes
may be resolved via another. If there are commonalities across sources, the merger shall decide the final result and behavior.

The story in plain english is:

	I have a bunch of attributes that I wish to resolve for the authenticated principal.

	I have a bunch of sources from which said attributes are retrieved.

	Figure it out.

Note that attribute repository sources, if/when defined, execute in a specific order.
This is important to take into account when attribute merging may take place.
By default, the execution order is the following but can be adjusted per source:

	LDAP

	JDBC

	JSON

	Groovy

	Internet2 Grouper [http://www.internet2.edu/products-services/trust-identity/grouper/]

	Shibboleth

	Stub

Note that if no explicit attribute mappings are defined, all permitted attributes on the record
may be retrieved by CAS from the attribute repository source and made available to the principal. On the other hand,
if explicit attribute mappings are defined, then only mapped attributes are retrieved.

Merging Strategies

The following mergeing strategies can be used to resolve conflicts when the same attribute are found from multiple sources:

| Type | Description
|————————-|—————————————————————————————————-
| REPLACE | Overwrites existing attribute values, if any.
| ADD | Retains existing attribute values if any, and ignores values from subsequent sources in the resolution chain.
| MERGE | Combines all values into a single attribute, essentially creating a multi-valued attribute.

Stub

Static attributes that need to be mapped to a hardcoded value belong here.

cas.authn.attributeRepository.stub[0].attributes.uid=uid
cas.authn.attributeRepository.stub[0].attributes.displayName=displayName
cas.authn.attributeRepository.stub[0].attributes.cn=commonName
cas.authn.attributeRepository.stub[0].attributes.affiliation=groupMembership

LDAP

If you wish to directly and separately retrieve attributes from an LDAP source,
the following settings are then relevant:

cas.authn.attributeRepository.ldap[0].attributes.uid=uid
cas.authn.attributeRepository.ldap[0].attributes.displayName=displayName
cas.authn.attributeRepository.ldap[0].attributes.cn=commonName
cas.authn.attributeRepository.ldap[0].attributes.affiliation=groupMembership

cas.authn.attributeRepository.ldap[0].ldapUrl=ldaps://ldap1.example.edu ldaps://ldap2.example.edu
cas.authn.attributeRepository.ldap[0].connectionStrategy=
cas.authn.attributeRepository.ldap[0].order=0
cas.authn.attributeRepository.ldap[0].useSsl=true
cas.authn.attributeRepository.ldap[0].useStartTls=false
cas.authn.attributeRepository.ldap[0].connectTimeout=5000
cas.authn.attributeRepository.ldap[0].baseDn=dc=example,dc=org
cas.authn.attributeRepository.ldap[0].userFilter=cn={user}
cas.authn.attributeRepository.ldap[0].subtreeSearch=true
cas.authn.attributeRepository.ldap[0].bindDn=cn=Directory Manager,dc=example,dc=org
cas.authn.attributeRepository.ldap[0].bindCredential=Password
cas.authn.attributeRepository.ldap[0].trustCertificates=
cas.authn.attributeRepository.ldap[0].keystore=
cas.authn.attributeRepository.ldap[0].keystorePassword=
cas.authn.attributeRepository.ldap[0].keystoreType=JKS|JCEKS|PKCS12
cas.authn.attributeRepository.ldap[0].poolPassivator=NONE|CLOSE|BIND
cas.authn.attributeRepository.ldap[0].minPoolSize=3
cas.authn.attributeRepository.ldap[0].maxPoolSize=10
cas.authn.attributeRepository.ldap[0].validateOnCheckout=true
cas.authn.attributeRepository.ldap[0].validatePeriodically=true
cas.authn.attributeRepository.ldap[0].validatePeriod=600
cas.authn.attributeRepository.ldap[0].validateTimeout=5000
cas.authn.attributeRepository.ldap[0].failFast=true
cas.authn.attributeRepository.ldap[0].idleTime=500
cas.authn.attributeRepository.ldap[0].prunePeriod=600
cas.authn.attributeRepository.ldap[0].blockWaitTime=5000
cas.authn.attributeRepository.ldap[0].providerClass=org.ldaptive.provider.unboundid.UnboundIDProvider

cas.authn.attributeRepository.ldap[0].validator.type=NONE|SEARCH|COMPARE
cas.authn.attributeRepository.ldap[0].validator.baseDn=
cas.authn.attributeRepository.ldap[0].validator.searchFilter=(objectClass=*)
cas.authn.attributeRepository.ldap[0].validator.scope=OBJECT|ONELEVEL|SUBTREE
cas.authn.attributeRepository.ldap[0].validator.attributeName=objectClass
cas.authn.attributeRepository.ldap[0].validator.attributeValues=top
cas.authn.attributeRepository.ldap[0].validator.dn=

Groovy

If you wish to directly and separately retrieve attributes from a Groovy script,
the following settings are then relevant:

cas.authn.attributeRepository.groovy[0].config.location=file:/etc/cas/attributes.groovy
cas.authn.attributeRepository.groovy[0].caseInsensitive=false
cas.authn.attributeRepository.groovy[0].order=0

The Groovy script may be designed as:

import java.util.List
import java.util.Map

class SampleGroovyPersonAttributeDao {
 def Map<String, List<Object>> run(final Object... args) {
 def uid = args[0]
 def logger = args[1];
 def casProperties = args[2]
 def casApplicationContext = args[3]

 logger.debug("[{}]: The received uid is [{}]", this.class.simpleName, uid)
 return[username:[uid], likes:["cheese", "food"], id:[1234,2,3,4,5], another:"attribute"]
 }
}

JSON

If you wish to directly and separately retrieve attributes from a static JSON source,
the following settings are then relevant:

cas.authn.attributeRepository.json[0].config.location=file://etc/cas/attribute-repository.json
cas.authn.attributeRepository.json[0].order=0

The format of the file may be:

{
 "user1": {
 "firstName":["Json1"],
 "lastName":["One"]
 },
 "user2": {
 "firstName":["Json2"],
 "eduPersonAffiliation":["employee", "student"]
 }
}

JDBC

If you wish to directly and separately retrieve attributes from a JDBC source,
the following settings are then relevant:

cas.authn.attributeRepository.jdbc[0].attributes.uid=uid
cas.authn.attributeRepository.jdbc[0].attributes.displayName=displayName
cas.authn.attributeRepository.jdbc[0].attributes.cn=commonName
cas.authn.attributeRepository.jdbc[0].attributes.affiliation=groupMembership

cas.authn.attributeRepository.jdbc[0].singleRow=true
cas.authn.attributeRepository.jdbc[0].order=0
cas.authn.attributeRepository.jdbc[0].requireAllAttributes=true
cas.authn.attributeRepository.jdbc[0].caseCanonicalization=NONE|LOWER|UPPER
cas.authn.attributeRepository.jdbc[0].queryType=OR|AND

Used only when there is a mapping of many rows to one user
cas.authn.attributeRepository.jdbc[0].columnMappings.columnAttrName1=columnAttrValue1
cas.authn.attributeRepository.jdbc[0].columnMappings.columnAttrName2=columnAttrValue2
cas.authn.attributeRepository.jdbc[0].columnMappings.columnAttrName3=columnAttrValue3

cas.authn.attributeRepository.jdbc[0].sql=SELECT * FROM table WHERE {0}
cas.authn.attributeRepository.jdbc[0].username=uid
cas.authn.attributeRepository.jdbc[0].healthQuery=
cas.authn.attributeRepository.jdbc[0].isolateInternalQueries=false
cas.authn.attributeRepository.jdbc[0].url=jdbc:hsqldb:mem:cas-hsql-database
cas.authn.attributeRepository.jdbc[0].failFast=true
cas.authn.attributeRepository.jdbc[0].isolationLevelName=ISOLATION_READ_COMMITTED
cas.authn.attributeRepository.jdbc[0].dialect=org.hibernate.dialect.HSQLDialect
cas.authn.attributeRepository.jdbc[0].leakThreshold=10
cas.authn.attributeRepository.jdbc[0].propagationBehaviorName=PROPAGATION_REQUIRED
cas.authn.attributeRepository.jdbc[0].batchSize=1
cas.authn.attributeRepository.jdbc[0].user=sa
cas.authn.attributeRepository.jdbc[0].ddlAuto=create-drop
cas.authn.attributeRepository.jdbc[0].password=
cas.authn.attributeRepository.jdbc[0].autocommit=false
cas.authn.attributeRepository.jdbc[0].driverClass=org.hsqldb.jdbcDriver
cas.authn.attributeRepository.jdbc[0].idleTimeout=5000
cas.authn.attributeRepository.jdbc[0].pool.suspension=false
cas.authn.attributeRepository.jdbc[0].pool.minSize=6
cas.authn.attributeRepository.jdbc[0].pool.maxSize=18
cas.authn.attributeRepository.jdbc[0].pool.maxWait=2000
cas.authn.attributeRepository.jdbc[0].dataSourceName=
cas.authn.attributeRepository.jdbc[0].dataSourceProxy=false

Grouper

This option reads all the groups from a Grouper instance for the given CAS principal and adopts them
as CAS attributes under a grouperGroups multi-valued attribute. To learn more about this topic, please review this guide.

cas.authn.attributeRepository.grouper[0].enabled=true

You will also need to ensure grouper.client.properties is available on the classpath (i.e. src/main/resources)
with the following configured properties:

grouperClient.webService.url = http://192.168.99.100:32768/grouper-ws/servicesRest
grouperClient.webService.login = banderson
grouperClient.webService.password = password

Shibboleth Attribute Resolver

To learn more about this topic, please review this guide.

cas.shibAttributeResolver.resources=classpath:/attribute-resolver.xml

Shibboleth Integrations

To learn more about this topic, please review this guide.

cas.authn.shibIdP.serverUrl=https://idp.example.org

Default Bundle

If you wish to release a default bundle of attributes to all applications,
and you would rather not duplicate the same attribute per every service definition,
then the following settings are relevant:

cas.authn.attributeRepository.defaultAttributesToRelease=cn,givenName,uid,affiliation

To learn more about this topic, please review this guide.

Protocol Attributes

Defines whether CAS should include and release protocol attributes defined in the specification in addition to the principal attribute.

cas.authn.releaseProtocolAttributes=true

Principal Resolution

In the event that a separate resolver is put into place, control
how the final principal should be constructed by default.

cas.personDirectory.principalAttribute=
cas.personDirectory.returnNull=false
cas.personDirectory.principalResolutionFailureFatal=false

Authentication Policy

To learn more about this topic, please review this guide.

Global authentication policy that is applied when
CAS attempts to vend and validate tickets.

cas.authn.policy.requiredHandlerAuthenticationPolicyEnabled=false

Any

Satisfied if any handler succeeds. Supports a tryAll flag to avoid short circuiting
and try every handler even if one prior succeeded.

cas.authn.policy.any.tryAll=false

All

Satisfied if and only if all given credentials are successfully authenticated.
Support for multiple credentials is new in CAS and this handler
would only be acceptable in a multi-factor authentication situation.

cas.authn.policy.all.enabled=true

NotPrevented

Satisfied if an only if the authentication event is not blocked by a PreventedException.

cas.authn.policy.notPrevented.enabled=true

Required

Satisfied if an only if a specified handler successfully authenticates its credential.

cas.authn.policy.req.tryAll=false
cas.authn.policy.req.handlerName=handlerName
cas.authn.policy.req.enabled=true

Authentication Throttling

CAS provides a facility for limiting failed login attempts to support password guessing and related abuse scenarios.
To learn more about this topic, please review this guide.

cas.authn.throttle.usernameParameter=username
cas.authn.throttle.startDelay=10000
cas.authn.throttle.repeatInterval=20000
cas.authn.throttle.appcode=CAS

cas.authn.throttle.failure.threshold=100
cas.authn.throttle.failure.code=AUTHENTICATION_FAILED
cas.authn.throttle.failure.rangeSeconds=60

Database

Queries the data source used by the CAS audit facility to prevent successive failed login attempts for a particular username from the
same IP address.

cas.authn.throttle.jdbc.auditQuery=SELECT AUD_DATE FROM COM_AUDIT_TRAIL WHERE AUD_CLIENT_IP = ? AND AUD_USER = ? \
AND AUD_ACTION = ? AND APPLIC_CD = ? AND AUD_DATE >= ? ORDER BY AUD_DATE DESC
cas.authn.throttle.jdbc.healthQuery=
cas.authn.throttle.jdbc.isolateInternalQueries=false
cas.authn.throttle.jdbc.url=jdbc:hsqldb:mem:cas-hsql-database
cas.authn.throttle.jdbc.failFast=true
cas.authn.throttle.jdbc.isolationLevelName=ISOLATION_READ_COMMITTED
cas.authn.throttle.jdbc.dialect=org.hibernate.dialect.HSQLDialect
cas.authn.throttle.jdbc.leakThreshold=10
cas.authn.throttle.jdbc.propagationBehaviorName=PROPAGATION_REQUIRED
cas.authn.throttle.jdbc.batchSize=1
cas.authn.throttle.jdbc.user=sa
cas.authn.throttle.jdbc.ddlAuto=create-drop
cas.authn.throttle.jdbc.maxAgeDays=180
cas.authn.throttle.jdbc.password=
cas.authn.throttle.jdbc.autocommit=false
cas.authn.throttle.jdbc.driverClass=org.hsqldb.jdbcDriver
cas.authn.throttle.jdbc.idleTimeout=5000

cas.authn.throttle.jdbc.pool.suspension=false
cas.authn.throttle.jdbc.pool.minSize=6
cas.authn.throttle.jdbc.pool.maxSize=18
cas.authn.throttle.jdbc.pool.maxWait=2000
cas.authn.throttle.jdbc.dataSourceName=
cas.authn.throttle.jdbc.dataSourceProxy=false

Adaptive Authentication

Control how CAS authentication should adapt itself to incoming client requests.
To learn more about this topic, please review this guide.

cas.authn.adaptive.rejectCountries=United.+
cas.authn.adaptive.rejectBrowsers=Gecko.+
cas.authn.adaptive.rejectIpAddresses=127.+

cas.authn.adaptive.requireMultifactor.mfa-duo=127.+|United.+|Gecko.+

Surrogate Authentication

Authenticate on behalf of another user.
To learn more about this topic, please review this guide.

cas.authn.surrogate.separator=+

Static Surrogate Accounts

cas.authn.surrogate.simple.surrogates.casuser=jsmith,jsmith2
cas.authn.surrogate.simple.surrogates.casuser2=jsmith4,jsmith2

JSON Surrogate Accounts

cas.authn.surrogate.json.config.location=file:/etc/cas/config/surrogates.json

LDAP Surrogate Accounts

cas.authn.surrogate.ldap.baseDn=
cas.authn.surrogate.ldap.searchFilter=principal={user}
cas.authn.surrogate.ldap.surrogateSearchFilter=(&(principal={user})(memberOf=cn=edu:example:cas:something:{user},dc=example,dc=edu))
cas.authn.surrogate.ldap.memberAttributeName=memberOf
cas.authn.surrogate.ldap.memberAttributeValueRegex=cn=edu:example:cas:something:([^,]+),.+

Risk-based Authentication

Evaluate suspicious authentication requests and take action.
To learn more about this topic, please review this guide.

cas.authn.adaptive.risk.threshold=0.6
cas.authn.adaptive.risk.daysInRecentHistory=30

cas.authn.adaptive.risk.ip.enabled=false

cas.authn.adaptive.risk.agent.enabled=false

cas.authn.adaptive.risk.geoLocation.enabled=false

cas.authn.adaptive.risk.dateTime.enabled=false
cas.authn.adaptive.risk.dateTime.windowInHours=2

cas.authn.adaptive.risk.response.blockAttempt=false

cas.authn.adaptive.risk.response.mfaProvider=
cas.authn.adaptive.risk.response.riskyAuthenticationAttribute=triggeredRiskBasedAuthentication

cas.authn.adaptive.risk.response.mail.from=
cas.authn.adaptive.risk.response.mail.text=
cas.authn.adaptive.risk.response.mail.subject=
cas.authn.adaptive.risk.response.mail.cc=
cas.authn.adaptive.risk.response.mail.bcc=
cas.authn.adaptive.risk.response.mail.attributeName=mail

cas.authn.adaptive.risk.response.sms.from=
cas.authn.adaptive.risk.response.sms.text=
cas.authn.adaptive.risk.response.sms.attributeName=phone

Email Submissions

spring.mail.host=
spring.mail.port=
spring.mail.username=
spring.mail.password=
spring.mail.testConnection=true
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true

SMS Messaging

To learn more about this topic, please review this guide.

Twillio

cas.twilio.accountId=
cas.twilio.token=

TextMagic

cas.textMagic.username=
cas.textMagic.token=

Clickatell

cas.clickatell.serverUrl=https://platform.clickatell.com/messages
cas.clickatell.token=

GeoTracking

To learn more about this topic, please review this guide.

GoogleMaps GeoTracking

Used to geo-profile authentication events.

cas.googleMaps.apiKey=
cas.googleMaps.clientId=
cas.googleMaps.clientSecret=
cas.googleMaps.connectTimeout=3000
cas.googleMaps.googleAppsEngine=false

Maxmind GeoTracking

Used to geo-profile authentication events.

cas.maxmind.cityDatabase=file:/etc/cas/maxmind/GeoLite2-City.mmdb
cas.maxmind.countryDatabase=file:/etc/cas/maxmind/GeoLite2-Country.mmdb

Digest Authentication

To learn more about this topic, please review this guide.

cas.authn.digest.users.casuser=3530292c24102bac7ced2022e5f1036a
cas.authn.digest.users.anotheruser=7530292c24102bac7ced2022e5f1036b
cas.authn.digest.realm=CAS
cas.authn.digest.name=
cas.authn.digest.authenticationMethod=auth

Radius Authentication

To learn more about this topic, please review this guide.

cas.authn.radius.server.nasPortId=-1
cas.authn.radius.server.nasRealPort=-1
cas.authn.radius.server.protocol=EAP_MSCHAPv2
cas.authn.radius.server.retries=3
cas.authn.radius.server.nasPortType=-1
cas.authn.radius.server.nasPort=-1
cas.authn.radius.server.nasIpAddress=
cas.authn.radius.server.nasIpv6Address=
cas.authn.radius.server.nasIdentifier=-1

cas.authn.radius.client.authenticationPort=1812
cas.authn.radius.client.sharedSecret=N0Sh@ar3d$ecReT
cas.authn.radius.client.socketTimeout=0
cas.authn.radius.client.inetAddress=localhost
cas.authn.radius.client.accountingPort=1813

cas.authn.radius.name=
cas.authn.radius.failoverOnException=false
cas.authn.radius.failoverOnAuthenticationFailure=false

cas.authn.radius.passwordEncoder.type=NONE|DEFAULT|STANDARD|BCRYPT|SCRYPT|PBKDF2|com.example.CustomPasswordEncoder
cas.authn.radius.passwordEncoder.characterEncoding=
cas.authn.radius.passwordEncoder.encodingAlgorithm=
cas.authn.radius.passwordEncoder.secret=
cas.authn.radius.passwordEncoder.strength=16

cas.authn.radius.principalTransformation.suffix=
cas.authn.radius.principalTransformation.caseConversion=NONE|UPPERCASE|LOWERCASE
cas.authn.radius.principalTransformation.prefix=

File (Whitelist) Authentication

To learn more about this topic, please review this guide.

cas.authn.file.separator=::
cas.authn.file.filename=file:///path/to/users/file
cas.authn.file.name=

cas.authn.file.passwordEncoder.type=NONE|DEFAULT|STANDARD|BCRYPT|SCRYPT|PBKDF2|com.example.CustomPasswordEncoder
cas.authn.file.passwordEncoder.characterEncoding=
cas.authn.file.passwordEncoder.encodingAlgorithm=
cas.authn.file.passwordEncoder.secret=
cas.authn.file.passwordEncoder.strength=16

cas.authn.file.principalTransformation.suffix=
cas.authn.file.principalTransformation.caseConversion=NONE|UPPERCASE|LOWERCASE
cas.authn.file.principalTransformation.prefix=

Reject Users (Blacklist) Authentication

To learn more about this topic, please review this guide.

cas.authn.reject.users=user1,user2
cas.authn.reject.name=

cas.authn.reject.passwordEncoder.type=NONE|DEFAULT|STANDARD|BCRYPT|SCRYPT|PBKDF2|com.example.CustomPasswordEncoder
cas.authn.reject.passwordEncoder.characterEncoding=
cas.authn.reject.passwordEncoder.encodingAlgorithm=
cas.authn.reject.passwordEncoder.secret=
cas.authn.reject.passwordEncoder.strength=16

cas.authn.reject.principalTransformation.suffix=
cas.authn.reject.principalTransformation.caseConversion=NONE|UPPERCASE|LOWERCASE
cas.authn.reject.principalTransformation.prefix=

Database Authentication

To learn more about this topic, please review this guide.

Query Database Authentication

Authenticates a user by comparing the user password (which can be encoded with a password encoder)
against the password on record determined by a configurable database query.

cas.authn.jdbc.query[0].sql=SELECT * FROM table WHERE name=?
cas.authn.jdbc.query[0].healthQuery=
cas.authn.jdbc.query[0].isolateInternalQueries=false
cas.authn.jdbc.query[0].url=jdbc:hsqldb:mem:cas-hsql-database
cas.authn.jdbc.query[0].failFast=true
cas.authn.jdbc.query[0].isolationLevelName=ISOLATION_READ_COMMITTED
cas.authn.jdbc.query[0].dialect=org.hibernate.dialect.HSQLDialect
cas.authn.jdbc.query[0].leakThreshold=10
cas.authn.jdbc.query[0].propagationBehaviorName=PROPAGATION_REQUIRED
cas.authn.jdbc.query[0].batchSize=1
cas.authn.jdbc.query[0].user=user
cas.authn.jdbc.query[0].ddlAuto=create-drop
cas.authn.jdbc.query[0].maxAgeDays=180
cas.authn.jdbc.query[0].password=secret
cas.authn.jdbc.query[0].autocommit=false
cas.authn.jdbc.query[0].driverClass=org.hsqldb.jdbcDriver
cas.authn.jdbc.query[0].idleTimeout=5000
cas.authn.jdbc.query[0].credentialCriteria=
cas.authn.jdbc.query[0].name=
cas.authn.jdbc.query[0].order=0
cas.authn.jdbc.query[0].dataSourceName=
cas.authn.jdbc.query[0].dataSourceProxy=false

cas.authn.jdbc.query[0].fieldPassword=password
cas.authn.jdbc.query[0].fieldExpired=
cas.authn.jdbc.query[0].fieldDisabled=
cas.authn.jdbc.query[0].principalAttributeList=sn,cn:commonName,givenName

cas.authn.jdbc.query[0].passwordEncoder.type=NONE|DEFAULT|STANDARD|BCRYPT|SCRYPT|PBKDF2|com.example.CustomPasswordEncoder
cas.authn.jdbc.query[0].passwordEncoder.characterEncoding=
cas.authn.jdbc.query[0].passwordEncoder.encodingAlgorithm=
cas.authn.jdbc.query[0].passwordEncoder.secret=
cas.authn.jdbc.query[0].passwordEncoder.strength=16

cas.authn.jdbc.query[0].principalTransformation.suffix=
cas.authn.jdbc.query[0].principalTransformation.caseConversion=NONE|UPPERCASE|LOWERCASE
cas.authn.jdbc.query[0].principalTransformation.prefix=

Search Database Authentication

Searches for a user record by querying against a username and password; the user is authenticated if at least one result is found.

cas.authn.jdbc.search[0].fieldUser=
cas.authn.jdbc.search[0].tableUsers=
cas.authn.jdbc.search[0].fieldPassword=
cas.authn.jdbc.search[0].healthQuery=
cas.authn.jdbc.search[0].isolateInternalQueries=false
cas.authn.jdbc.search[0].url=jdbc:hsqldb:mem:cas-hsql-database
cas.authn.jdbc.search[0].failFast=true
cas.authn.jdbc.search[0].isolationLevelName=ISOLATION_READ_COMMITTED
cas.authn.jdbc.search[0].dialect=org.hibernate.dialect.HSQLDialect
cas.authn.jdbc.search[0].leakThreshold=10
cas.authn.jdbc.search[0].propagationBehaviorName=PROPAGATION_REQUIRED
cas.authn.jdbc.search[0].batchSize=1
cas.authn.jdbc.search[0].user=sa
cas.authn.jdbc.search[0].ddlAuto=create-drop
cas.authn.jdbc.search[0].maxAgeDays=180
cas.authn.jdbc.search[0].password=
cas.authn.jdbc.search[0].autocommit=false
cas.authn.jdbc.search[0].driverClass=org.hsqldb.jdbcDriver
cas.authn.jdbc.search[0].idleTimeout=5000
cas.authn.jdbc.search[0].credentialCriteria=
cas.authn.jdbc.search[0].name=
cas.authn.jdbc.search[0].order=0
cas.authn.jdbc.search[0].dataSourceName=
cas.authn.jdbc.search[0].dataSourceProxy=false

cas.authn.jdbc.search[0].passwordEncoder.type=NONE|DEFAULT|STANDARD|BCRYPT|SCRYPT|PBKDF2|com.example.CustomPasswordEncoder
cas.authn.jdbc.search[0].passwordEncoder.characterEncoding=
cas.authn.jdbc.search[0].passwordEncoder.encodingAlgorithm=
cas.authn.jdbc.search[0].passwordEncoder.secret=
cas.authn.jdbc.search[0].passwordEncoder.strength=16

cas.authn.jdbc.search[0].principalTransformation.suffix=
cas.authn.jdbc.search[0].principalTransformation.caseConversion=NONE|UPPERCASE|LOWERCASE
cas.authn.jdbc.search[0].principalTransformation.prefix=

Bind Database Authentication

Authenticates a user by attempting to create a database connection using the username and (hashed) password.

cas.authn.jdbc.bind[0].healthQuery=
cas.authn.jdbc.bind[0].isolateInternalQueries=false
cas.authn.jdbc.bind[0].url=jdbc:hsqldb:mem:cas-hsql-database
cas.authn.jdbc.bind[0].failFast=true
cas.authn.jdbc.bind[0].isolationLevelName=ISOLATION_READ_COMMITTED
cas.authn.jdbc.bind[0].dialect=org.hibernate.dialect.HSQLDialect
cas.authn.jdbc.bind[0].leakThreshold=10
cas.authn.jdbc.bind[0].propagationBehaviorName=PROPAGATION_REQUIRED
cas.authn.jdbc.bind[0].batchSize=1
cas.authn.jdbc.bind[0].user=sa
cas.authn.jdbc.bind[0].ddlAuto=create-drop
cas.authn.jdbc.bind[0].maxAgeDays=180
cas.authn.jdbc.bind[0].password=
cas.authn.jdbc.bind[0].autocommit=false
cas.authn.jdbc.bind[0].driverClass=org.hsqldb.jdbcDriver
cas.authn.jdbc.bind[0].idleTimeout=5000
cas.authn.jdbc.bind[0].credentialCriteria=
cas.authn.jdbc.bind[0].name=
cas.authn.jdbc.bind[0].order=0
cas.authn.jdbc.bind[0].dataSourceName=
cas.authn.jdbc.bind[0].dataSourceProxy=false
cas.authn.jdbc.bind[0].passwordEncoder.type=NONE|DEFAULT|STANDARD|BCRYPT|SCRYPT|PBKDF2|com.example.CustomPasswordEncoder
cas.authn.jdbc.bind[0].passwordEncoder.characterEncoding=
cas.authn.jdbc.bind[0].passwordEncoder.encodingAlgorithm=
cas.authn.jdbc.bind[0].passwordEncoder.secret=
cas.authn.jdbc.bind[0].passwordEncoder.strength=16

cas.authn.jdbc.bind[0].principalTransformation.suffix=
cas.authn.jdbc.bind[0].principalTransformation.caseConversion=NONE|UPPERCASE|LOWERCASE
cas.authn.jdbc.bind[0].principalTransformation.prefix=

Encode Database Authentication

A JDBC querying handler that will pull back the password and the private salt value for a user and validate the encoded
password using the public salt value. Assumes everything is inside the same database table. Supports settings for
number of iterations as well as private salt.

This password encoding method combines the private Salt and the public salt which it prepends to the password before hashing.
If multiple iterations are used, the bytecode hash of the first iteration is rehashed without the salt values. The final hash
is converted to hex before comparing it to the database value.

cas.authn.jdbc.encode[0].numberOfIterations=0
cas.authn.jdbc.encode[0].numberOfIterationsFieldName=numIterations
cas.authn.jdbc.encode[0].saltFieldName=salt
cas.authn.jdbc.encode[0].staticSalt=
cas.authn.jdbc.encode[0].sql=
cas.authn.jdbc.encode[0].algorithmName=
cas.authn.jdbc.encode[0].passwordFieldName=password
cas.authn.jdbc.encode[0].expiredFieldName=
cas.authn.jdbc.encode[0].disabledFieldName=
cas.authn.jdbc.encode[0].healthQuery=
cas.authn.jdbc.encode[0].isolateInternalQueries=false
cas.authn.jdbc.encode[0].url=jdbc:hsqldb:mem:cas-hsql-database
cas.authn.jdbc.encode[0].failFast=true
cas.authn.jdbc.encode[0].isolationLevelName=ISOLATION_READ_COMMITTED
cas.authn.jdbc.encode[0].dialect=org.hibernate.dialect.HSQLDialect
cas.authn.jdbc.encode[0].leakThreshold=10
cas.authn.jdbc.encode[0].propagationBehaviorName=PROPAGATION_REQUIRED
cas.authn.jdbc.encode[0].batchSize=1
cas.authn.jdbc.encode[0].user=sa
cas.authn.jdbc.encode[0].ddlAuto=create-drop
cas.authn.jdbc.encode[0].maxAgeDays=180
cas.authn.jdbc.encode[0].password=
cas.authn.jdbc.encode[0].autocommit=false
cas.authn.jdbc.encode[0].driverClass=org.hsqldb.jdbcDriver
cas.authn.jdbc.encode[0].idleTimeout=5000
cas.authn.jdbc.encode[0].credentialCriteria=
cas.authn.jdbc.encode[0].name=
cas.authn.jdbc.encode[0].order=0
cas.authn.jdbc.encode[0].dataSourceName=
cas.authn.jdbc.encode[0].dataSourceProxy=false
cas.authn.jdbc.encode[0].passwordEncoder.type=NONE|DEFAULT|STANDARD|BCRYPT|SCRYPT|PBKDF2|com.example.CustomPasswordEncoder
cas.authn.jdbc.encode[0].passwordEncoder.characterEncoding=
cas.authn.jdbc.encode[0].passwordEncoder.encodingAlgorithm=
cas.authn.jdbc.encode[0].passwordEncoder.secret=
cas.authn.jdbc.encode[0].passwordEncoder.strength=16

cas.authn.jdbc.encode[0].principalTransformation.suffix=
cas.authn.jdbc.encode[0].principalTransformation.caseConversion=NONE|UPPERCASE|LOWERCASE
cas.authn.jdbc.encode[0].principalTransformation.prefix=

MongoDb Authentication

To learn more about this topic, please review this guide.

cas.authn.mongo.mongoHostUri=mongodb://uri
cas.authn.mongo.usernameAttribute=username
cas.authn.mongo.attributes=
cas.authn.mongo.passwordAttribute=password
cas.authn.mongo.collectionName=users
cas.authn.mongo.name=

cas.authn.mongo.principalTransformation.suffix=
cas.authn.mongo.principalTransformation.caseConversion=NONE|UPPERCASE|LOWERCASE
cas.authn.mongo.principalTransformation.prefix=

cas.authn.mongo.passwordEncoder.type=NONE|DEFAULT|STANDARD|BCRYPT|SCRYPT|PBKDF2|com.example.CustomPasswordEncoder
cas.authn.mongo.passwordEncoder.characterEncoding=
cas.authn.mongo.passwordEncoder.encodingAlgorithm=
cas.authn.mongo.passwordEncoder.secret=
cas.authn.mongo.passwordEncoder.strength=16

LDAP Authentication

CAS authenticates a username/password against an LDAP directory such as Active Directory or OpenLDAP.
There are numerous directory architectures and we provide configuration for four common cases.

Note that CAS will automatically create the appropriate components internally
based on the settings specified below. If you wish to authenticate against more than one LDAP
server, simply increment the index and specify the settings for the next LDAP server.

Note: Failure to specify adequate properties such as type, ldapUrl, etc
will simply deactivate LDAP authentication altogether silently.

Note: Attributes retrieved as part of LDAP authentication are merged with all attributes
retrieved from other attribute repository sources, if any.
Attributes retrieved directly as part of LDAP authentication trump all other attributes.

To learn more about this topic, please review this guide.

The following authentication types are supported:

| Type | Description|————————-|—————————————————————————————————-
| AD | Acive Directory - Users authenticate with sAMAccountName typically using a DN format.| AUTHENTICATED | Manager bind/search type of authentication. If principalAttributePassword is empty then a user simple bind is done to validate credentials. Otherwise the given attribute is compared with the given principalAttributePassword using the SHA encrypted value of it.
| DIRECT | Compute user DN from a format string and perform simple bind. This is relevant when no search is required to compute the DN needed for a bind operation. This option is useful when all users are under a single branch in the directory, e.g. ou=Users,dc=example,dc=org, or the username provided on the CAS login form is part of the DN, e.g. uid=%s,ou=Users,dc=exmaple,dc=org
| ANONYMOUS | Similar semantics as AUTHENTICATED except no bindDn and bindCredential may be specified to initialize the connection. If principalAttributePassword is empty then a user simple bind is done to validate credentials. Otherwise the given attribute is compared with the given principalAttributePassword using the SHA encrypted value of it.

Connection Strategies

If multiple URLs are provided as the ldapURL this describes how each URL will be processed.

| Provider | Description|———————–|———————————————————————————————–
| DEFAULT | The default JNDI provider behavior will be used.| ACTIVE_PASSIVE | First LDAP will be used for every request unless it fails and then the next shall be used.| ROUND_ROBIN | For each new connection the next url in the list will be used.| RANDOM | For each new connection a random LDAP url will be selected.
| DNS_SRV | LDAP urls based on DNS SRV records of the configured/given LDAP url will be used.

Connection Initialization

LDAP connection configuration injected into the LDAP connection pool can be initialized with the following parameters:

| Behavior | Description|—————————————-|——————————————————————-
| bindDn/bindCredential provided | Use the provided credentials to bind when initializing connections.
| bindDn/bindCredential set to * | Use a fast-bind strategy to initialize the pool.| bindDn/bindCredential set to blank | Skip connection initializing; perform operations anonymously.
| SASL mechanism provided | Use the given SASL mechanism to bind when initializing connections.

Validators

The following LDAP validators can be used to test connection health status:

| Type | Description
|————————-|—————————————————————————————————-
| NONE | No validation takes place.
| SEARCH | Validates a connection is healthy by performing a search operation. Validation is considered successful if the search result size is greater than zero.
| COMPARE | Validates a connection is healthy by performing a compare operation.

Passivators

The following options can be used to passivate bjects when they are checked back into the LDAP connection pool:

| Type | Description
|————————-|—————————————————————————————————-
| NONE | No passivation takes place.
| CLOSE | Passivates a connection by attempting to close it.
| BIND | Passivates a connection by performing a bind operation on it.

Why Passivators?

You may receive unexpected LDAP failures, when CAS is configured to authenticate using DIRECT or AUTHENTICATED types and LDAP is locked down to not allow anonymous binds/searches. Every second attempt with a given LDAP connection from the pool would fail if it was on the same connection as a failed login attempt, and the regular connection validator would similarly fail. When a connection is returned back to a pool, it still may contain the principal and credentials from the previous attempt. Before the next bind attempt using that connection, the validator tries to validate the connection again but fails because it’s no longer trying with the configured bind credentials but with whatever user DN was used in the previous step. Given the validation failure, the connection is closed and CAS would deny access by default. Passivators attempt to reconnect to LDAP with the configured bind credentials, effectively resetting the connection to what it should be after each bind request.

cas.authn.ldap[0].type=AD|AUTHENTICATED|DIRECT|ANONYMOUS

cas.authn.ldap[0].ldapUrl=ldaps://ldap1.example.edu ldaps://ldap2.example.edu
cas.authn.ldap[0].connectionStrategy=
cas.authn.ldap[0].useSsl=true
cas.authn.ldap[0].useStartTls=false
cas.authn.ldap[0].connectTimeout=5000
cas.authn.ldap[0].baseDn=dc=example,dc=org
cas.authn.ldap[0].userFilter=cn={user}
cas.authn.ldap[0].subtreeSearch=true
cas.authn.ldap[0].usePasswordPolicy=true
cas.authn.ldap[0].bindDn=cn=Directory Manager,dc=example,dc=org
cas.authn.ldap[0].bindCredential=Password

cas.authn.ldap[0].enhanceWithEntryResolver=true
cas.authn.ldap[0].dnFormat=uid=%s,ou=people,dc=example,dc=org
cas.authn.ldap[0].principalAttributeId=uid
cas.authn.ldap[0].principalAttributePassword=password
cas.authn.ldap[0].principalAttributeList=sn,cn:commonName,givenName,eduPersonTargettedId:SOME_IDENTIFIER
cas.authn.ldap[0].allowMultiplePrincipalAttributeValues=true
cas.authn.ldap[0].allowMissingPrincipalAttributeValue=true
cas.authn.ldap[0].credentialCriteria=

cas.authn.ldap[0].saslMechanism=GSSAPI|DIGEST_MD5|CRAM_MD5|EXTERNAL
cas.authn.ldap[0].saslRealm=EXAMPLE.COM
cas.authn.ldap[0].saslAuthorizationId=
cas.authn.ldap[0].saslMutualAuth=
cas.authn.ldap[0].saslQualityOfProtection=
cas.authn.ldap[0].saslSecurityStrength=

cas.authn.ldap[0].trustCertificates=
cas.authn.ldap[0].keystore=
cas.authn.ldap[0].keystorePassword=
cas.authn.ldap[0].keystoreType=JKS|JCEKS|PKCS12

cas.authn.ldap[0].poolPassivator=NONE|CLOSE|BIND
cas.authn.ldap[0].minPoolSize=3
cas.authn.ldap[0].maxPoolSize=10
cas.authn.ldap[0].validateOnCheckout=true
cas.authn.ldap[0].validatePeriodically=true
cas.authn.ldap[0].validatePeriod=600
cas.authn.ldap[0].validateTimeout=5000

cas.authn.ldap[0].failFast=true
cas.authn.ldap[0].idleTime=5000
cas.authn.ldap[0].prunePeriod=5000
cas.authn.ldap[0].blockWaitTime=5000

cas.authn.ldap[0].providerClass=org.ldaptive.provider.unboundid.UnboundIDProvider
cas.authn.ldap[0].allowMultipleDns=false

cas.authn.ldap[0].searchEntryHandlers[0].type=CASE_CHANGE|DN_ATTRIBUTE_ENTRY|MERGE| \
OBJECT_GUID|OBJECT_SID|PRIMARY_GROUP| \
RANGE_ENTRY|RECURSIVE_ENTRY

cas.authn.ldap[0].searchEntryHandlers[0].caseChange.dnCaseChange=NONE|LOWER|UPPER
cas.authn.ldap[0].searchEntryHandlers[0].caseChange.attributeNameCaseChange=NONE|LOWER|UPPER
cas.authn.ldap[0].searchEntryHandlers[0].caseChange.attributeValueCaseChange=NONE|LOWER|UPPER
cas.authn.ldap[0].searchEntryHandlers[0].caseChange.attributeNames=

cas.authn.ldap[0].searchEntryHandlers[0].dnAttribute.dnAttributeName=entryDN
cas.authn.ldap[0].searchEntryHandlers[0].dnAttribute.addIfExists=false

cas.authn.ldap[0].searchEntryHandlers[0].primaryGroupId.groupFilter=(&(objectClass=group)(objectSid={0}))
cas.authn.ldap[0].searchEntryHandlers[0].primaryGroupId.baseDn=

cas.authn.ldap[0].searchEntryHandlers[0].mergeAttribute.mergeAttributeName=
cas.authn.ldap[0].searchEntryHandlers[0].mergeAttribute.attribueNames=

cas.authn.ldap[0].searchEntryHandlers[0].recursive.searchAttribute=
cas.authn.ldap[0].searchEntryHandlers[0].recursive.mergeAttributes=

cas.authn.ldap[0].name=
cas.authn.ldap[0].order=0

cas.authn.ldap[0].passwordEncoder.type=NONE|DEFAULT|STANDARD|BCRYPT|SCRYPT|PBKDF2|com.example.CustomPasswordEncoder
cas.authn.ldap[0].passwordEncoder.characterEncoding=
cas.authn.ldap[0].passwordEncoder.encodingAlgorithm=
cas.authn.ldap[0].passwordEncoder.secret=
cas.authn.ldap[0].passwordEncoder.strength=16

cas.authn.ldap[0].principalTransformation.suffix=
cas.authn.ldap[0].principalTransformation.caseConversion=NONE|UPPERCASE|LOWERCASE
cas.authn.ldap[0].principalTransformation.prefix=

cas.authn.ldap[0].validator.type=NONE|SEARCH|COMPARE
cas.authn.ldap[0].validator.baseDn=
cas.authn.ldap[0].validator.searchFilter=(objectClass=*)
cas.authn.ldap[0].validator.scope=OBJECT|ONELEVEL|SUBTREE
cas.authn.ldap[0].validator.attributeName=objectClass
cas.authn.ldap[0].validator.attributeValues=top
cas.authn.ldap[0].validator.dn=

cas.authn.ldap[0].passwordPolicy.type=GENERIC|AD|FreeIPA|EDirectory
cas.authn.ldap[0].passwordPolicy.enabled=true
cas.authn.ldap[0].passwordPolicy.policyAttributes.accountLocked=javax.security.auth.login.AccountLockedException
cas.authn.ldap[0].passwordPolicy.loginFailures=5
cas.authn.ldap[0].passwordPolicy.warningAttributeValue=
cas.authn.ldap[0].passwordPolicy.warningAttributeName=
cas.authn.ldap[0].passwordPolicy.displayWarningOnMatch=true
cas.authn.ldap[0].passwordPolicy.warnAll=true
cas.authn.ldap[0].passwordPolicy.warningDays=30

REST Authentication

This allows the CAS server to reach to a remote REST endpoint via a POST.
To learn more about this topic, please review this guide.

cas.authn.rest.uri=https://...
cas.authn.rest.name=

cas.authn.rest.passwordEncoder.type=NONE|DEFAULT|STANDARD|BCRYPT|SCRYPT|PBKDF2|com.example.CustomPasswordEncoder
cas.authn.rest.passwordEncoder.characterEncoding=
cas.authn.rest.passwordEncoder.encodingAlgorithm=
cas.authn.rest.passwordEncoder.secret=
cas.authn.rest.passwordEncoder.strength=16

Google Apps Authentication

Authenticate via CAS into Google Apps services and applications.
To learn more about this topic, please review this guide.

cas.googleApps.publicKeyLocation=file:/etc/cas/public.key
cas.googleApps.keyAlgorithm=RSA
cas.googleApps.privateKeyLocation=file:/etc/cas/private.key

OpenID Authentication

Allow CAS to become an OpenID authentication provider.
To learn more about this topic, please review this guide.

cas.authn.openid.enforceRpId=false
cas.authn.openid.principal.principalAttribute=
cas.authn.openid.principal.returnNull=false
cas.authn.openid.name=

SPNEGO Authentication

To learn more about this topic, please review this guide.

cas.authn.spnego.kerberosConf=
cas.authn.spnego.mixedModeAuthentication=false
cas.authn.spnego.cachePolicy=600
cas.authn.spnego.timeout=300000
cas.authn.spnego.jcifsServicePrincipal=HTTP/cas.example.com@EXAMPLE.COM
cas.authn.spnego.jcifsNetbiosWins=
cas.authn.spnego.loginConf=
cas.authn.spnego.ntlmAllowed=true
cas.authn.spnego.hostNamePatternString=.+
cas.authn.spnego.jcifsUsername=
cas.authn.spnego.useSubjectCredsOnly=false
cas.authn.spnego.supportedBrowsers=MSIE,Trident,Firefox,AppleWebKit
cas.authn.spnego.jcifsDomainController=
cas.authn.spnego.dnsTimeout=2000
cas.authn.spnego.hostNameClientActionStrategy=hostnameSpnegoClientAction
cas.authn.spnego.kerberosKdc=172.10.1.10
cas.authn.spnego.alternativeRemoteHostAttribute=alternateRemoteHeader
cas.authn.spnego.jcifsDomain=
cas.authn.spnego.ipsToCheckPattern=127.+
cas.authn.spnego.kerberosDebug=
cas.authn.spnego.send401OnAuthenticationFailure=true
cas.authn.spnego.kerberosRealm=EXAMPLE.COM
cas.authn.spnego.ntlm=false
cas.authn.spnego.principalWithDomainName=false
cas.authn.spnego.jcifsServicePassword=
cas.authn.spnego.jcifsPassword=
cas.authn.spnego.spnegoAttributeName=distinguishedName
cas.authn.spnego.name=

cas.authn.spnego.principal.principalAttribute=
cas.authn.spnego.principal.returnNull=false

cas.authn.spnego.ldap.ldapUrl=ldaps://ldap1.example.edu ldaps://ldap2.example.edu
cas.authn.spnego.ldap.connectionStrategy=
cas.authn.spnego.ldap.baseDn=dc=example,dc=org
cas.authn.spnego.ldap.bindDn=cn=Directory Manager,dc=example,dc=org
cas.authn.spnego.ldap.bindCredential=Password
cas.authn.spnego.ldap.providerClass=org.ldaptive.provider.unboundid.UnboundIDProvider
cas.authn.spnego.ldap.connectTimeout=5000
cas.authn.spnego.ldap.trustCertificates=
cas.authn.spnego.ldap.keystore=
cas.authn.spnego.ldap.keystorePassword=
cas.authn.spnego.ldap.keystoreType=JKS|JCEKS|PKCS12
cas.authn.spnego.ldap.poolPassivator=NONE|CLOSE|BIND
cas.authn.spnego.ldap.minPoolSize=3
cas.authn.spnego.ldap.maxPoolSize=10
cas.authn.spnego.ldap.validateOnCheckout=true
cas.authn.spnego.ldap.validatePeriodically=true
cas.authn.spnego.ldap.validatePeriod=600
cas.authn.spnego.ldap.validateTimeout=5000
cas.authn.spnego.ldap.failFast=true
cas.authn.spnego.ldap.idleTime=500
cas.authn.spnego.ldap.prunePeriod=600
cas.authn.spnego.ldap.blockWaitTime=5000
cas.authn.spnego.ldap.subtreeSearch=true
cas.authn.spnego.ldap.useSsl=true
cas.authn.spnego.ldap.useStartTls=false
cas.authn.spnego.ldap.searchFilter=host={host}

cas.authn.spnego.ldap.validator.type=NONE|SEARCH|COMPARE
cas.authn.spnego.ldap.validator.searchFilter=(objectClass=*)
cas.authn.spnego.ldap.validator.scope=OBJECT|ONELEVEL|SUBTREE
cas.authn.spnego.ldap.validator.attributeName=objectClass
cas.authn.spnego.ldap.validator.attributeValues=top
cas.authn.spnego.ldap.validator.dn=

NTLM Authentication

cas.authn.ntlm.includePattern=
cas.authn.ntlm.loadBalance=true
cas.authn.ntlm.domainController=
cas.authn.ntlm.name=

JAAS Authentication

To learn more about this topic, please review this guide.

cas.authn.jaas[0].realm=CAS
cas.authn.jaas[0].kerberosKdcSystemProperty=
cas.authn.jaas[0].kerberosRealmSystemProperty=
cas.authn.jaas[0].name=
cas.authn.jaas[0].credentialCriteria=

cas.authn.jaas[0].passwordEncoder.type=NONE|DEFAULT|STANDARD|BCRYPT|SCRYPT|PBKDF2|com.example.CustomPasswordEncoder
cas.authn.jaas[0].passwordEncoder.characterEncoding=
cas.authn.jaas[0].passwordEncoder.encodingAlgorithm=
cas.authn.jaas[0].passwordEncoder.secret=
cas.authn.jaas[0].passwordEncoder.strength=16

cas.authn.jaas[0].principalTransformation.suffix=
cas.authn.jaas[0].principalTransformation.caseConversion=NONE|UPPERCASE|LOWERCASE
cas.authn.jaas[0].principalTransformation.prefix=

GUA Authentication

To learn more about this topic, please review this guide.

LDAP Repository

cas.authn.gua.ldap.imageAttribute=userImageIdentifier
cas.authn.gua.ldap.ldapUrl=ldaps://ldap1.example.edu ldaps://ldap2.example.edu
cas.authn.gua.ldap.connectionStrategy=
cas.authn.gua.ldap.baseDn=dc=example,dc=org
cas.authn.gua.ldap.userFilter=cn={user}
cas.authn.gua.ldap.bindDn=cn=Directory Manager,dc=example,dc=org
cas.authn.gua.ldap.bindCredential=Password
cas.authn.gua.ldap.providerClass=org.ldaptive.provider.unboundid.UnboundIDProvider
cas.authn.gua.ldap.connectTimeout=5000
cas.authn.gua.ldap.trustCertificates=
cas.authn.gua.ldap.keystore=
cas.authn.gua.ldap.keystorePassword=
cas.authn.gua.ldap.keystoreType=JKS|JCEKS|PKCS12
cas.authn.gua.ldap.poolPassivator=NONE|CLOSE|BIND
cas.authn.gua.ldap.minPoolSize=3
cas.authn.gua.ldap.maxPoolSize=10
cas.authn.gua.ldap.validateOnCheckout=true
cas.authn.gua.ldap.validatePeriodically=true
cas.authn.gua.ldap.validatePeriod=600
cas.authn.gua.ldap.validateTimeout=5000
cas.authn.gua.ldap.failFast=true
cas.authn.gua.ldap.idleTime=500
cas.authn.gua.ldap.prunePeriod=600
cas.authn.gua.ldap.blockWaitTime=5000
cas.authn.gua.ldap.useSsl=true
cas.authn.gua.ldap.useStartTls=false

cas.authn.gua.ldap.validator.type=NONE|SEARCH|COMPARE
cas.authn.gua.ldap.validator.baseDn=
cas.authn.gua.ldap.validator.searchFilter=(objectClass=*)
cas.authn.gua.ldap.validator.scope=OBJECT|ONELEVEL|SUBTREE
cas.authn.gua.ldap.validator.attributeName=objectClass
cas.authn.gua.ldap.validator.attributeValues=top
cas.authn.gua.ldap.validator.dn=

Static Resource Repository

cas.authn.gua.resource.location=file:/path/to/image.jpg

JWT/Token Authentication

To learn more about this topic, please review this guide.

cas.authn.token.name=

cas.authn.token.principalTransformation.suffix=
cas.authn.token.principalTransformation.caseConversion=NONE|UPPERCASE|LOWERCASE
cas.authn.token.principalTransformation.prefix=

JWT Service Tickets

cas.authn.token.crypto.signing.key=
cas.authn.token.crypto.signing.keySize=512
cas.authn.token.crypto.encryption.key=
cas.authn.token.crypto.encryption.keySize=256
cas.authn.token.crypto.alg=AES

The encryption key must be randomly-generated string whose length is defined by the encryption key size setting.
The signing key is a JWK whose length is defined by the signing key size setting.

Stormpath Authentication

To learn more about this topic, please review this guide.

cas.authn.stormpath.apiKey=
cas.authn.stormpath.secretkey=
cas.authn.stormpath.applicationId=
cas.authn.stormpath.name=

cas.authn.stormpath.principalTransformation.suffix=
cas.authn.stormpath.principalTransformation.caseConversion=NONE|UPPERCASE|LOWERCASE
cas.authn.stormpath.principalTransformation.prefix=

Remote Address Authentication

To learn more about this topic, please review this guide.

cas.authn.remoteAddress.ipAddressRange=
cas.authn.remoteAddress.name=

Accept Users Authentication

Default CredentialsTo test the default authentication scheme in CAS,
use casuser and Mellon as the username and password respectively. These are automatically
configured via the static authentication handler, and MUST be removed from the configuration
prior to production rollouts.

cas.authn.accept.users=
cas.authn.accept.name=

cas.authn.accept.passwordEncoder.type=NONE|DEFAULT|STANDARD|BCRYPT|SCRYPT|PBKDF2
cas.authn.accept.passwordEncoder.characterEncoding=
cas.authn.accept.passwordEncoder.encodingAlgorithm=
cas.authn.accept.passwordEncoder.secret=
cas.authn.accept.passwordEncoder.strength=16

cas.authn.accept.principalTransformation.suffix=
cas.authn.accept.principalTransformation.caseConversion=NONE|UPPERCASE|LOWERCASE
cas.authn.accept.principalTransformation.prefix=

X509 Authentication

To learn more about this topic, please review this guide.

Principal Resolution

X.509 principal resolution can act on the following principal types:

| Type | Description|————————-|—————————————————————————————————-
| SERIAL_NO | Resolve the principal by the serial number with a configurable radix, ranging from 2 to 36. If radix is 16, then the serial number could be filled with leading zeros to even the number of digits.
| SERIAL_NO_DN | Resolve the principal by serial number and issuer dn.
| SUBJECT | Resolve the principal by extracting one or more attribute values from the certificate subject DN and combining them with intervening delimiters.
| SUBJECT_ALT_NAME | Resolve the principal by the subject alternative name extension.
| SUBJECT_DN | The default type; Resolve the principal by the certificate’s subject dn.

CRL Fetching / Revocation

CAS provides a flexible policy engine for certificate revocation checking. This facility arose due to lack of configurability
in the revocation machinery built into the JSSE.

Available policies cover the following events:

	CRL Expiration

	CRL Unavailability

In either event, the following options are available:

| Type | Description|————————-|—————————————————————————————————-
| ALLOW | Allow authentication to proceed.
| DENY | Deny authentication and block.
| THRESHOLD | Applicable to CRL expiration, throttle the request whereby expired data is permitted up to a threshold period of time but not afterward.

Revocation certificate checking can be carried out in one of the following ways:

| Type | Description|————————-|—————————————————————————————————-
| NONE | No revocation is performed.
| CRL | The CRL URI(s) mentioned in the certificate cRLDistributionPoints extension field. Caches are available to prevent excessive IO against CRL endpoints; CRL data is fetched if does not exist in the cache or if it is expired.
| RESOURCE | A CRL hosted at a fixed location. The CRL is fetched at periodic intervals and cached.

To fetch CRLs, the following options are available:

| Type | Description|————————-|—————————————————————————————————-
| RESOURCE | By default, all revocation checks use fixed resources to fetch the CRL resource from the specified location.
| LDAP | A CRL resource may be fetched from a pre-configured attribute, in the event that the CRL resource location is an LDAP URI

cas.authn.x509.crlExpiredPolicy=DENY|ALLOW|THRESHOLD
cas.authn.x509.crlUnavailablePolicy=DENY|ALLOW|THRESHOLD
cas.authn.x509.crlResourceExpiredPolicy=DENY|ALLOW|THRESHOLD
cas.authn.x509.crlResourceUnavailablePolicy=DENY|ALLOW|THRESHOLD

cas.authn.x509.revocationChecker=NONE|CRL|RESOURCE
cas.authn.x509.crlFetcher=RESOURCE|LDAP

cas.authn.x509.crlResources[0]=file:/...

cas.authn.x509.cacheMaxElementsInMemory=1000
cas.authn.x509.cacheDiskOverflow=false
cas.authn.x509.cacheEternal=false
cas.authn.x509.cacheTimeToLiveSeconds=7200
cas.authn.x509.cacheTimeToIdleSeconds=1800

cas.authn.x509.checkKeyUsage=false
cas.authn.x509.revocationPolicyThreshold=172800

cas.authn.x509.regExSubjectDnPattern=.+
cas.authn.x509.regExTrustedIssuerDnPattern=.+
cas.authn.x509.trustedIssuerDnPattern=.+

cas.authn.x509.name=
cas.authn.x509.principalDescriptor=
cas.authn.x509.principalSNRadix=10
cas.authn.x509.principalHexSNZeroPadding=false
cas.authn.x509.maxPathLength=1
cas.authn.x509.throwOnFetchFailure=false
cas.authn.x509.valueDelimiter=,
cas.authn.x509.checkAll=false
cas.authn.x509.requireKeyUsage=false
cas.authn.x509.serialNumberPrefix=SERIALNUMBER=
cas.authn.x509.refreshIntervalSeconds=3600
cas.authn.x509.maxPathLengthAllowUnspecified=false
cas.authn.x509.certificateAttribute=certificateRevocationList

cas.authn.x509.ldap.ldapUrl=ldaps://ldap1.example.edu ldaps://ldap2.example.edu
cas.authn.x509.ldap.connectionStrategy=
cas.authn.x509.ldap.useSsl=true
cas.authn.x509.ldap.useStartTls=false
cas.authn.x509.ldap.connectTimeout=5000
cas.authn.x509.ldap.baseDn=dc=example,dc=org
cas.authn.x509.ldap.searchFilter=cn={user}
cas.authn.x509.ldap.subtreeSearch=true
cas.authn.x509.ldap.bindDn=cn=Directory Manager,dc=example,dc=org
cas.authn.x509.ldap.bindCredential=Password
cas.authn.x509.ldap.trustCertificates=
cas.authn.x509.ldap.keystore=
cas.authn.x509.ldap.keystorePassword=
cas.authn.x509.ldap.keystoreType=JKS|JCEKS|PKCS12
cas.authn.x509.ldap.poolPassivator=NONE|CLOSE|BIND
cas.authn.x509.ldap.minPoolSize=3
cas.authn.x509.ldap.maxPoolSize=10
cas.authn.x509.ldap.validateOnCheckout=true
cas.authn.x509.ldap.validatePeriodically=true
cas.authn.x509.ldap.validatePeriod=600
cas.authn.x509.ldap.validateTimeout=5000
cas.authn.x509.ldap.failFast=true
cas.authn.x509.ldap.idleTime=500
cas.authn.x509.ldap.prunePeriod=600
cas.authn.x509.ldap.blockWaitTime=5000
cas.authn.x509.ldap.providerClass=org.ldaptive.provider.unboundid.UnboundIDProvider

cas.authn.x509.ldap.validator.type=NONE|SEARCH|COMPARE
cas.authn.x509.ldap.validator.baseDn=
cas.authn.x509.ldap.validator.searchFilter=(objectClass=*)
cas.authn.x509.ldap.validator.scope=OBJECT|ONELEVEL|SUBTREE
cas.authn.x509.ldap.validator.attributeName=objectClass
cas.authn.x509.ldap.validator.attributeValues=top
cas.authn.x509.ldap.validator.dn=

cas.authn.x509.principal.principalAttribute=
cas.authn.x509.principal.returnNull=false
cas.authn.x509.principalType=SERIAL_NO|SERIAL_NO_DN|SUBJECT|SUBJECT_ALT_NAME|SUBJECT_DN

Shiro Authentication

To learn more about this topic, please review this guide.

cas.authn.shiro.requiredPermissions=value1,value2,...
cas.authn.shiro.requiredRoles=value1,value2,...
cas.authn.shiro.config.location=classpath:shiro.ini
cas.authn.shiro.name=

cas.authn.shiro.passwordEncoder.type=NONE|DEFAULT|STANDARD|BCRYPT|SCRYPT|PBKDF2|com.example.CustomPasswordEncoder
cas.authn.shiro.passwordEncoder.characterEncoding=
cas.authn.shiro.passwordEncoder.encodingAlgorithm=
cas.authn.shiro.passwordEncoder.secret=
cas.authn.shiro.passwordEncoder.strength=16

cas.authn.shiro.principalTransformation.suffix=
cas.authn.shiro.principalTransformation.caseConversion=NONE|UPPERCASE|LOWERCASE
cas.authn.shiro.principalTransformation.prefix=

Trusted Authentication

To learn more about this topic, please review this guide.

cas.authn.trusted.principalAttribute=
cas.authn.trusted.returnNull=false
cas.authn.trusted.name=

WS-Fed Delegated Authentication

To learn more about this topic, please review this guide.

Attribute Types

In order to construct the final authenticated principal, CAS may be configured to use the following
strategies when collecting principal attributes:

| Type | Description
|———————-|————————————————————————————————
| CAS | Use attributes provided by the delegated WS-Fed instance.
| WSFED | Use attributes provided by CAS’ own attribute resolution mechanics and repository.
| BOTH | Combine both the above options, where CAS attribute repositories take precedence over WS-Fed.

cas.authn.wsfed.identityProviderUrl=https://adfs.example.org/adfs/ls/
cas.authn.wsfed.identityProviderIdentifier=https://adfs.example.org/adfs/services/trust
cas.authn.wsfed.relyingPartyIdentifier=urn:cas:localhost
cas.authn.wsfed.attributesType=WSFED
cas.authn.wsfed.signingCertificateResources=classpath:adfs-signing.crt
cas.authn.wsfed.tolerance=10000
cas.authn.wsfed.identityAttribute=upn
cas.authn.wsfed.attributeResolverEnabled=true
cas.authn.wsfed.autoRedirect=true
cas.authn.wsfed.name=

cas.authn.wsfed.principal.principalAttribute=
cas.authn.wsfed.principal.returnNull=false

Private/Public keypair used to decrypt assertions, if any.
cas.authn.wsfed.encryptionPrivateKey=classpath:private.key
cas.authn.wsfed.encryptionCertificate=classpath:certificate.crt
cas.authn.wsfed.encryptionPrivateKeyPassword=NONE

Multifactor Authentication

To learn more about this topic, please review this guide.

Activate MFA globally for all, regardless of other settings
cas.authn.mfa.globalProviderId=mfa-duo

Activate MFA globally based on authentication metadata attributes
cas.authn.mfa.globalAuthenticationAttributeNameTriggers=memberOf,eduPersonPrimaryAffiliation
cas.authn.mfa.globalAuthenticationAttributeValueRegex=faculty|staff

Activate MFA globally based on principal attributes
cas.authn.mfa.globalPrincipalAttributeNameTriggers=memberOf,eduPersonPrimaryAffiliation

Specify the regular expression pattern to trigger multifactor when working with a single provider.
Comment out the setting when working with multiple multifactor providers
cas.authn.mfa.globalPrincipalAttributeValueRegex=faculty|staff

Activate MFA globally based on principal attributes and a groovy-based predicate
cas.authn.mfa.globalPrincipalAttributePredicate=file:/etc/cas/PredicateExample.groovy

Activate MFA based on a custom REST API/endpoint
cas.authn.mfa.restEndpoint=https://entity.example.org/mfa

Activate MFA based on a Groovy script
cas.authn.mfa.groovyScript=file:/etc/cas/mfaGroovyTrigger.groovy

Activate MFA based on Internet2's Grouper
cas.authn.mfa.grouperGroupField=NAME|EXTENSION|DISPLAY_NAME|DISPLAY_EXTENSION

Activate MFA based on an optional request parameter
cas.authn.mfa.requestParameter=authn_method

Describe the global failure mode in case provider cannot be reached
cas.authn.mfa.globalFailureMode=CLOSED

Design the attribute chosen to communicate the authentication context
cas.authn.mfa.authenticationContextAttribute=authnContextClass

Identify the request content type for non-browser MFA requests
cas.authn.mfa.contentType=application/cas

Select MFA provider, if resolved more than one, via Groovy script
cas.authn.mfa.providerSelectorGroovyScript=file:/etc/cas/mfaGroovySelector.groovy

Multifactor Trusted Device/Browser

To learn more about this topic, please review this guide.

cas.authn.mfa.trusted.authenticationContextAttribute=isFromTrustedMultifactorAuthentication
cas.authn.mfa.trusted.deviceRegistrationEnabled=true
cas.authn.mfa.trusted.expiration=30
cas.authn.mfa.trusted.timeUnit=SECONDS|MINUTES|HOURS|DAYS

cas.authn.mfa.trusted.encryptionKey=
cas.authn.mfa.trusted.signingKey=
cas.authn.mfa.trusted.cipherEnabled=true

Signing & Encryption

The signing and encryption keys are both JWKs of size 512 and 256.
The encryption algorithm is set to AES_128_CBC_HMAC_SHA_256.

JDBC Storage

cas.authn.mfa.trusted.jpa.healthQuery=
cas.authn.mfa.trusted.jpa.isolateInternalQueries=false
cas.authn.mfa.trusted.jpa.url=jdbc:hsqldb:mem:cas-jdbc-storage
cas.authn.mfa.trusted.jpa.failFast=true
cas.authn.mfa.trusted.jpa.dialect=org.hibernate.dialect.HSQLDialect
cas.authn.mfa.trusted.jpa.leakThreshold=10
cas.authn.mfa.trusted.jpa.batchSize=1
cas.authn.mfa.trusted.jpa.defaultCatalog=
cas.authn.mfa.trusted.jpa.defaultSchema=
cas.authn.mfa.trusted.jpa.user=sa
cas.authn.mfa.trusted.jpa.ddlAuto=create-drop
cas.authn.mfa.trusted.jpa.password=
cas.authn.mfa.trusted.jpa.autocommit=false
cas.authn.mfa.trusted.jpa.driverClass=org.hsqldb.jdbcDriver
cas.authn.mfa.trusted.jpa.idleTimeout=5000
cas.authn.mfa.trusted.jpa.dataSourceName=
cas.authn.mfa.trusted.jpa.dataSourceProxy=false

cas.authn.mfa.trusted.jpa.pool.suspension=false
cas.authn.mfa.trusted.jpa.pool.minSize=6
cas.authn.mfa.trusted.jpa.pool.maxSize=18
cas.authn.mfa.trusted.jpa.pool.maxWait=2000

MongoDb Storage

cas.authn.mfa.trusted.mongodb.clientUri=
cas.authn.mfa.trusted.mongodb.dropCollection=false
cas.authn.mfa.trusted.mongodb.collection=MongoDbCasTrustedAuthnMfaRepository

REST Storage

cas.authn.mfa.trusted.rest.endpoint=https://api.example.org/trustedBrowser

Cleaner

A cleaner process is scheduled to run in the background to clean up expired and stale tickets.
This section controls how that process should behave.

cas.authn.mfa.trusted.cleaner.startDelay=10000
cas.authn.mfa.trusted.cleaner.repeatInterval=60000
cas.authn.mfa.trusted.cleaner.enabled=true

Google Authenticator

To learn more about this topic, please review this guide.

cas.authn.mfa.gauth.windowSize=3
cas.authn.mfa.gauth.issuer=
cas.authn.mfa.gauth.codeDigits=6
cas.authn.mfa.gauth.label=
cas.authn.mfa.gauth.timeStepSize=30
cas.authn.mfa.gauth.rank=0
cas.authn.mfa.gauth.trustedDeviceEnabled=true
cas.authn.mfa.gauth.name=

cas.authn.mfa.gauth.cleaner.enabled=true
cas.authn.mfa.gauth.cleaner.startDelay=20000
cas.authn.mfa.gauth.cleaner.repeatInterval=60000

cas.authn.mfa.gauth.bypass.principalAttributeName=bypass|skip
cas.authn.mfa.gauth.bypass.principalAttributeValue=true|enabled.+
cas.authn.mfa.gauth.bypass.authenticationAttributeName=bypass|skip
cas.authn.mfa.gauth.bypass.authenticationAttributeValue=allowed.+|enabled.+
cas.authn.mfa.gauth.bypass.authenticationHandlerName=AcceptUsers.+
cas.authn.mfa.gauth.bypass.authenticationMethodName=LdapAuthentication.+
cas.authn.mfa.gauth.bypass.credentialClassType=UsernamePassword.+

Google Authenticator JSON

cas.authn.mfa.gauth.json.config.location=file:/somewhere.json

Google Authenticator Rest

cas.authn.mfa.gauth.rest.endpointUrl=https://somewhere.gauth.com

Google Authenticator MongoDb

cas.authn.mfa.gauth.mongodb.clientUri=
cas.authn.mfa.gauth.mongodb.dropCollection=false
cas.authn.mfa.gauth.mongodb.collection=MongoDbGoogleAuthenticatorRepository
cas.authn.mfa.gauth.mongodb.tokenCollection=MongoDbGoogleAuthenticatorTokenRepository

Google Authenticator JPA

cas.authn.mfa.gauth.jpa.database.healthQuery=
cas.authn.mfa.gauth.jpa.database.isolateInternalQueries=false
cas.authn.mfa.gauth.jpa.database.url=jdbc:hsqldb:mem:cas-gauth
cas.authn.mfa.gauth.jpa.database.failFast=true
cas.authn.mfa.gauth.jpa.database.dialect=org.hibernate.dialect.HSQLDialect
cas.authn.mfa.gauth.jpa.database.leakThreshold=10
cas.authn.mfa.gauth.jpa.database.batchSize=1
cas.authn.mfa.gauth.jpa.database.user=sa
cas.authn.mfa.gauth.jpa.database.ddlAuto=create-drop
cas.authn.mfa.gauth.jpa.database.password=
cas.authn.mfa.gauth.jpa.database.autocommit=false
cas.authn.mfa.gauth.jpa.database.driverClass=org.hsqldb.jdbcDriver
cas.authn.mfa.gauth.jpa.database.idleTimeout=5000
cas.authn.mfa.gauth.jpa.database.dataSourceName=
cas.authn.mfa.gauth.jpa.database.dataSourceProxy=false

cas.authn.mfa.gauth.jpa.database.pool.suspension=false
cas.authn.mfa.gauth.jpa.database.pool.minSize=6
cas.authn.mfa.gauth.jpa.database.pool.maxSize=18
cas.authn.mfa.gauth.jpa.database.pool.maxWait=2000

YubiKey

To learn more about this topic, please review this guide.

cas.authn.mfa.yubikey.clientId=
cas.authn.mfa.yubikey.secretKey=
cas.authn.mfa.yubikey.rank=0
cas.authn.mfa.yubikey.apiUrls=
cas.authn.mfa.yubikey.trustedDeviceEnabled=true
cas.authn.mfa.yubikey.name=

cas.authn.mfa.yubikey.bypass.principalAttributeName=bypass|skip
cas.authn.mfa.yubikey.bypass.principalAttributeValue=true|enabled.+
cas.authn.mfa.yubikey.bypass.authenticationAttributeName=bypass|skip
cas.authn.mfa.yubikey.bypass.authenticationAttributeValue=allowed.+|enabled.+
cas.authn.mfa.yubikey.bypass.authenticationHandlerName=AcceptUsers.+
cas.authn.mfa.yubikey.bypass.authenticationMethodName=LdapAuthentication.+
cas.authn.mfa.yubikey.bypass.credentialClassType=UsernamePassword.+

Radius OTP

To learn more about this topic, please review this guide.

cas.authn.mfa.radius.failoverOnAuthenticationFailure=false
cas.authn.mfa.radius.failoverOnException=false
cas.authn.mfa.radius.rank=0
cas.authn.mfa.radius.trustedDeviceEnabled=true
cas.authn.mfa.radius.name=

cas.authn.mfa.radius.client.socketTimeout=0
cas.authn.mfa.radius.client.sharedSecret=N0Sh@ar3d$ecReT
cas.authn.mfa.radius.client.authenticationPort=1812
cas.authn.mfa.radius.client.accountingPort=1813
cas.authn.mfa.radius.client.inetAddress=localhost

cas.authn.mfa.radius.server.retries=3
cas.authn.mfa.radius.server.nasPortType=-1
cas.authn.mfa.radius.server.protocol=EAP_MSCHAPv2
cas.authn.mfa.radius.server.nasRealPort=-1
cas.authn.mfa.radius.server.nasPortId=-1
cas.authn.mfa.radius.server.nasIdentifier=-1
cas.authn.mfa.radius.server.nasPort=-1
cas.authn.mfa.radius.server.nasIpAddress=
cas.authn.mfa.radius.server.nasIpv6Address=

cas.authn.mfa.radius.bypass.principalAttributeName=bypass|skip
cas.authn.mfa.radius.bypass.principalAttributeValue=true|enabled.+
cas.authn.mfa.radius.bypass.authenticationAttributeName=bypass|skip
cas.authn.mfa.radius.bypass.authenticationAttributeValue=allowed.+|enabled.+
cas.authn.mfa.radius.bypass.authenticationHandlerName=AcceptUsers.+
cas.authn.mfa.radius.bypass.authenticationMethodName=LdapAuthentication.+
cas.authn.mfa.radius.bypass.credentialClassType=UsernamePassword.+

DuoSecurity

To learn more about this topic, please review this guide.

cas.authn.mfa.duo[0].duoSecretKey=
cas.authn.mfa.duo[0].rank=0
cas.authn.mfa.duo[0].duoApplicationKey=
cas.authn.mfa.duo[0].duoIntegrationKey=
cas.authn.mfa.duo[0].duoApiHost=
cas.authn.mfa.duo[0].trustedDeviceEnabled=true
cas.authn.mfa.duo[0].id=mfa-duo
cas.authn.mfa.duo[0].name=

cas.authn.mfa.duo[0].bypass.principalAttributeName=bypass|skip
cas.authn.mfa.duo[0].bypass.principalAttributeValue=true|enabled.+
cas.authn.mfa.duo[0].bypass.authenticationAttributeName=bypass|skip
cas.authn.mfa.duo[0].bypass.authenticationAttributeValue=allowed.+|enabled.+
cas.authn.mfa.duo[0].bypass.authenticationHandlerName=AcceptUsers.+
cas.authn.mfa.duo[0].bypass.authenticationMethodName=LdapAuthentication.+
cas.authn.mfa.duo[0].bypass.credentialClassType=UsernamePassword.+

The duoApplicationKey is a string, at least 40 characters long, that you generate and keep secret from Duo.
You can generate a random string in Python with:

import os, hashlib
print hashlib.sha1(os.urandom(32)).hexdigest()

FIDO U2F

To learn more about this topic, please review this guide.

cas.authn.mfa.u2f.rank=0
cas.authn.mfa.u2f.name=

cas.authn.mfa.u2f.bypass.principalAttributeName=bypass|skip
cas.authn.mfa.u2f.bypass.principalAttributeValue=true|enabled.+
cas.authn.mfa.u2f.bypass.authenticationAttributeName=bypass|skip
cas.authn.mfa.u2f.bypass.authenticationAttributeValue=allowed.+|enabled.+
cas.authn.mfa.u2f.bypass.authenticationHandlerName=AcceptUsers.+
cas.authn.mfa.u2f.bypass.authenticationMethodName=LdapAuthentication.+
cas.authn.mfa.u2f.bypass.credentialClassType=UsernamePassword.+

FIDO U2F Memory

cas.authn.mfa.u2f.expireRegistrations=30
cas.authn.mfa.u2f.expireRegistrationsTimeUnit=SECONDS
cas.authn.mfa.u2f.expireDevices=30
cas.authn.mfa.u2f.expireDevicesTimeUnit=DAYS

Microsoft Azure

To learn more about this topic, please review this guide.

cas.authn.mfa.azure.phoneAttribute=phone
cas.authn.mfa.azure.configDir=/etc/cas/azure
cas.authn.mfa.azure.privateKeyPassword=
cas.authn.mfa.azure.mode=POUND|PIN
cas.authn.mfa.azure.rank=0
cas.authn.mfa.azure.name=
cas.authn.mfa.azure.allowInternationalCalls=false

cas.authn.mfa.azure.bypass.principalAttributeName=bypass|skip
cas.authn.mfa.azure.bypass.principalAttributeValue=true|enabled.+
cas.authn.mfa.azure.bypass.authenticationAttributeName=bypass|skip
cas.authn.mfa.azure.bypass.authenticationAttributeValue=allowed.+|enabled.+
cas.authn.mfa.azure.bypass.authenticationHandlerName=AcceptUsers.+
cas.authn.mfa.azure.bypass.authenticationMethodName=LdapAuthentication.+
cas.authn.mfa.azure.bypass.credentialClassType=UsernamePassword.+

Authy

To learn more about this topic, please review this guide.

cas.authn.mfa.authy.apiKey=
cas.authn.mfa.authy.apiUrl=
cas.authn.mfa.authy.phoneAttribute=phone
cas.authn.mfa.authy.mailAttribute=mail
cas.authn.mfa.authy.countryCode=1
cas.authn.mfa.authy.forceVerification=true
cas.authn.mfa.authy.trustedDeviceEnabled=true
cas.authn.mfa.authy.name=

cas.authn.mfa.authy.bypass.principalAttributeName=bypass|skip
cas.authn.mfa.authy.bypass.principalAttributeValue=true|enabled.+
cas.authn.mfa.authy.bypass.authenticationAttributeName=bypass|skip
cas.authn.mfa.authy.bypass.authenticationAttributeValue=allowed.+|enabled.+
cas.authn.mfa.authy.bypass.authenticationHandlerName=AcceptUsers.+
cas.authn.mfa.authy.bypass.authenticationMethodName=LdapAuthentication.+
cas.authn.mfa.authy.bypass.credentialClassType=UsernamePassword.+

SAML Core

Control core SAML functionality within CAS.

cas.samlCore.ticketidSaml2=false
cas.samlCore.skewAllowance=0
cas.samlCore.attributeNamespace=http://www.ja-sig.org/products/cas/
cas.samlCore.issuer=localhost
cas.samlCore.securityManager=org.apache.xerces.util.SecurityManager

SAML IdP

Allow CAS to become a SAML2 identity provider.
To learn more about this topic, please review this guide.

Attributes Name Formats

Name formats for an individual attribute can be mapped to a number of pre-defined formats, or a custom format of your own choosing.
A given attribute that is to be encoded in the final SAML response may contain any of the following name formats:

| Type | Description
|———————-|—————————————————————————-
| basic | Map the attribute to urn:oasis:names:tc:SAML:2.0:attrname-format:basic.
| uri | Map the attribute to urn:oasis:names:tc:SAML:2.0:attrname-format:uri.
| unspecified | Map the attribute to urn:oasis:names:tc:SAML:2.0:attrname-format:basic.
| urn:my:own:format | Map the attribute to urn:my:own:format.

cas.authn.samlIdp.entityId=https://cas.example.org/idp
cas.authn.samlIdp.scope=example.org
cas.authn.samlIdp.authenticationContextClassMappings[0]=urn:oasis:names:tc:SAML:2.0:ac:classes:SomeClassName->mfa-duo

cas.authn.samlIdp.metadata.cacheExpirationMinutes=30
cas.authn.samlIdp.metadata.failFast=true
cas.authn.samlIdp.metadata.location=file:/etc/cas/saml
cas.authn.samlIdp.metadata.privateKeyAlgName=RSA
cas.authn.samlIdp.metadata.requireValidMetadata=true

cas.authn.samlIdp.metadata.basicAuthnUsername=
cas.authn.samlIdp.metadata.basicAuthnPassword=
cas.authn.samlIdp.metadata.supportedContentTypes=

cas.authn.samlIdp.logout.forceSignedLogoutRequests=true
cas.authn.samlIdp.logout.singleLogoutCallbacksDisabled=false

cas.authn.samlIdp.response.skewAllowance=0
cas.authn.samlIdp.response.signError=false
cas.authn.samlIdp.response.useAttributeFriendlyName=true
cas.authn.samlIdp.response.attributeNameFormats=attributeName->basic|uri|unspecified|custom-format-etc,...

cas.authn.samlIdp.algs.overrideSignatureCanonicalizationAlgorithm=
cas.authn.samlIdp.algs.overrideDataEncryptionAlgorithms=
cas.authn.samlIdp.algs.overrideKeyEncryptionAlgorithms=
cas.authn.samlIdp.algs.overrideBlackListedEncryptionAlgorithms=
cas.authn.samlIdp.algs.overrideWhiteListedAlgorithms=
cas.authn.samlIdp.algs.overrideSignatureReferenceDigestMethods=
cas.authn.samlIdp.algs.overrideSignatureAlgorithms=
cas.authn.samlIdp.algs.overrideBlackListedSignatureSigningAlgorithms=
cas.authn.samlIdp.algs.overrideWhiteListedSignatureSigningAlgorithms=

SAML SPs

Allow CAS to register and enable a number of built-in SAML service provider integrations.
To learn more about this topic, please review this guide.

Dropbox

cas.samlSP.dropbox.metadata=/etc/cas/saml/dropbox.xml
cas.samlSP.dropbox.name=Dropbox
cas.samlSP.dropbox.description=Dropbox Integration
cas.samlSP.dropbox.nameIdAttribute=mail
cas.samlSP.dropbox.signatureLocation=

TestShib

cas.samlSP.testShib.metadata=http://www.testshib.org/metadata/testshib-providers.xml
cas.samlSP.testShib.name=TestShib
cas.samlSP.testShib.description=TestShib Integration
cas.samlSP.testShib.attributes=eduPersonPrincipalName
cas.samlSP.testShib.signatureLocation=

OpenAthens

cas.samlSP.openAthens.metadata=/path/to/openAthens-metadata.xml
cas.samlSP.openAthens.name=openAthens
cas.samlSP.openAthens.description=openAthens Integration
cas.samlSP.openAthens.attributes=eduPersonPrincipalName,email

Web Advisor

cas.samlSP.webAdvisor.metadata=/path/to/webadvisor-metadata.xml
cas.samlSP.webAdvisor.name=Web Advisor
cas.samlSP.webAdvisor.description=Web Advisor Integration
cas.samlSP.webAdvisor.attributes=uid

Adobe Creative Cloud

cas.samlSP.adobeCloud.metadata=/path/to/adobe-metadata.xml
cas.samlSP.adobeCloud.name=Adobe Creative Cloud
cas.samlSP.adobeCloud.description=Adobe Creative Cloud Integration
cas.samlSP.adobeCloud.attributes=Email,FirstName,LastName

Securing The Human

cas.samlSP.sansSth.metadata=/path/to/sth-metadata.xml
cas.samlSP.sansSth.name=Securing The Human
cas.samlSP.sansSth.description=Securing The Human Integration
cas.samlSP.sansSth.attributes=email,firstName,lastName,scopedUserId,department,reference

Easy IEP

cas.samlSP.easyIep.metadata=/path/to/easyiep-metadata.xml
cas.samlSP.easyIep.name=Easy IEP
cas.samlSP.easyIep.description=Easy IEP Integration
cas.samlSP.easyIep.attributes=employeeId

Infinite Campus

cas.samlSP.infiniteCampus.metadata=/path/to/infinitecampus-metadata.xml
cas.samlSP.infiniteCampus.name=Infinite Campus
cas.samlSP.infiniteCampus.description=Infinite Campus Integration
cas.samlSP.infiniteCampus.attributes=employeeId

Slack

cas.samlSP.slack.metadata=/path/to/slack-metadata.xml
cas.samlSP.slack.name=Slack
cas.samlSP.slack.description=Slack Integration
cas.samlSP.slack.attributes=User.Email,User.Username,first_name,last_name
cas.samlSP.slack.nameIdFormat=persistent
cas.samlSP.slack.nameIdAttribute=employeeId

Zendesk

cas.samlSP.zendesk.metadata=/path/to/zendesk-metadata.xml
cas.samlSP.zendesk.name=Zendesk
cas.samlSP.zendesk.description=Zendesk Integration
cas.samlSP.zendesk.attributes=organization,tags,phone,role
cas.samlSP.zendesk.nameIdFormat=emailAddress
cas.samlSP.zendesk.nameIdAttribute=email

Gartner

cas.samlSP.gartner.metadata=/path/to/gartner-metadata.xml
cas.samlSP.gartner.name=Gartner
cas.samlSP.gartner.description=Gartner Integration
cas.samlSP.gartner.attributes=urn:oid:2.5.4.42,urn:oid:2.5.4.4,urn:oid:0.9.2342.19200300.100.1.3

Arc GIS

cas.samlSP.arcGIS.metadata=/path/to/arc-metadata.xml
cas.samlSP.arcGIS.name=ArcGIS
cas.samlSP.arcGIS.description=ArcGIS Integration
cas.samlSP.arcGIS.nameIdAttribute=arcNameId
cas.samlSP.arcGIS.attributes=mail,givenName,arcNameId
cas.samlSP.arcGIS.nameIdFormat=unspecified

Benefit Focus

cas.samlSP.benefitFocus.metadata=/path/to/benefitFocus-metadata.xml
cas.samlSP.benefitFocus.name=Benefit Focus
cas.samlSP.benefitFocus.description=Benefit Focus Integration
cas.samlSP.benefitFocus.nameIdAttribute=benefitFocusUniqueId
cas.samlSP.benefitFocus.nameIdFormat=unspecified

Office365

cas.samlSP.office365.metadata=/etc/cas/saml/azure.xml
cas.samlSP.office365.name=O365
cas.samlSP.office365.description=Office365 Integration
cas.samlSP.office365.nameIdAttribute=scopedImmutableID
cas.samlSP.office365.attributes=IDPEmail,ImmutableID
cas.samlSP.office365.signatureLocation=

SAManage

cas.samlSP.saManage.metadata=/etc/cas/saml/samanage.xml
cas.samlSP.saManage.name=SAManage
cas.samlSP.saManage.description=SAManage Integration
cas.samlSP.saManage.nameIdAttribute=mail
cas.samlSP.saManage.signatureLocation=

Workday

cas.samlSP.workday.metadata=/etc/cas/saml/workday.xml
cas.samlSP.workday.name=Workday
cas.samlSP.workday.description=Workday Integration
cas.samlSP.workday.signatureLocation=

Salesforce

cas.samlSP.salesforce.metadata=/etc/cas/saml/salesforce.xml
cas.samlSP.salesforce.name=Salesforce
cas.samlSP.salesforce.description=Salesforce Integration
cas.samlSP.salesforce.attributes=mail,eduPersonPrincipalName
cas.samlSP.salesforce.signatureLocation=

Academic Works

cas.samlSP.academicWorks.metadata=/etc/cas/saml/aw.xml
cas.samlSP.academicWorks.name=AcademicWorks
cas.samlSP.academicWorks.description=AcademicWorks Integration
cas.samlSP.academicWorks.attributes=mail,displayName

Zoom

cas.samlSP.zoom.metadata=/etc/cas/saml/zoom.xml
cas.samlSP.zoom.name=Zoom
cas.samlSP.zoom.description=Zoom Integration
cas.samlSP.zoom.attributes=mail,sn,givenName
cas.samlSP.zoom.nameIdAttribute=mail

Evernote

cas.samlSP.evernote.metadata=/etc/cas/saml/evernote.xml
cas.samlSP.evernote.name=Evernote
cas.samlSP.evernote.description=Evernote Integration
cas.samlSP.evernote.nameIdAttribute=mail
cas.samlSP.evernote.nameIdFormat=emailAddress

Tableau

cas.samlSP.tableau.metadata=/etc/cas/saml/tableau.xml
cas.samlSP.tableau.name=Tableau
cas.samlSP.tableau.description=Tableau Integration
cas.samlSP.tableau.attributes=username

Asana

cas.samlSP.asana.metadata=/etc/cas/saml/asana.xml
cas.samlSP.asana.name=Asana
cas.samlSP.asana.description=Asana Integration
cas.samlSP.asana.nameIdAttribute=mail
cas.samlSP.asana.nameIdFormat=emailAddress

Box

cas.samlSP.box.metadata=/etc/cas/saml/box.xml
cas.samlSP.box.name=Box
cas.samlSP.box.description=Box Integration
cas.samlSP.box.attributes=email,firstName,lastName
cas.samlSP.box.signatureLocation=

Service Now

cas.samlSP.serviceNow.metadata=/etc/cas/saml/serviceNow.xml
cas.samlSP.serviceNow.name=ServiceNow
cas.samlSP.serviceNow.description=serviceNow Integration
cas.samlSP.serviceNow.attributes=eduPersonPrincipalName
cas.samlSP.serviceNow.signatureLocation=

Net Partner

cas.samlSP.netPartner.metadata=/etc/cas/saml/netPartner.xml
cas.samlSP.netPartner.name=Net Partner
cas.samlSP.netPartner.description=Net Partner Integration
cas.samlSP.netPartner.nameIdAttribute=studentId
cas.samlSP.netPartner.attributes=
cas.samlSP.netPartner.signatureLocation=

Webex

cas.samlSP.webex.metadata=/etc/cas/saml/webex.xml
cas.samlSP.webex.name=Webex
cas.samlSP.webex.description=Webex Integration
cas.samlSP.webex.nameIdAttribute=email
cas.samlSP.webex.attributes=firstName,lastName

InCommon

Multiple entity ids can be specified to filter the InCommon metadata [https://spaces.internet2.edu/display/InCFederation/Metadata+Aggregates].
EntityIds can be regular expression patterns and are mapped to CAS’ serviceId field in the registry.
The signature location MUST BE the public key used to sign the metadata.

cas.samlSP.inCommon.metadata=http://md.incommon.org/InCommon/InCommon-metadata.xml
cas.samlSP.inCommon.name=InCommon Aggregate
cas.samlSP.inCommon.description=InCommon Metadata Aggregate
cas.samlSP.inCommon.attributes=eduPersonPrincipalName,givenName,cn,sn
cas.samlSP.inCommon.signatureLocation=/etc/cas/saml/inc-md-public-key.pem
cas.samlSP.inCommon.entityIds[0]=sampleSPEntityId

OpenID Connect

Allow CAS to become an OpenID Connect provider (OP). To learn more about this topic, please review this guide.

cas.authn.oidc.issuer=http://localhost:8080/cas/oidc

Skew ID tokens in minutes
cas.authn.oidc.skew=5

cas.authn.oidc.jwksFile=file:/keystore.jwks
cas.authn.oidc.jwksCacheInMinutes=60

cas.authn.oidc.dynamicClientRegistrationMode=OPEN|PROTECTED

cas.authn.oidc.subjectTypes=public,pairwise

Supported scopes
cas.authn.oidc.scopes=openid,profile,email,address,phone,offline_access

Supported claims
cas.authn.oidc.claims=sub,name,preferred_username,family_name, \
given_name,middle_name,given_name,profile, \
picture,nickname,website,zoneinfo,locale,updated_at,birthdate, \
email,email_verified,phone_number,phone_number_verified,address

Define custom scopes and claims
cas.authn.oidc.userDefinedScopes.scope1=cn,givenName,photos,customAttribute
cas.authn.oidc.userDefinedScopes.scope2=cn,givenName,photos,customAttribute2

Map fixed claims to CAS attributes
cas.authn.oidc.claimsMap.given_name=custom-given-name
cas.authn.oidc.claimsMap.preferred_username=global-user-attribute

Pac4j Delegated AuthN

Act as a proxy, and delegate authentication to external identity providers.
To learn more about this topic, please review this guide.

cas.authn.pac4j.typedIdUsed=false
cas.authn.pac4j.autoRedirect=false
cas.authn.pac4j.name=

CAS

Delegate authentication to an external CAS server.

cas.authn.pac4j.cas[0].loginUrl=
cas.authn.pac4j.cas[0].protocol=

Facebook

Delegate authentication to Facebook.

cas.authn.pac4j.facebook.fields=
cas.authn.pac4j.facebook.id=
cas.authn.pac4j.facebook.secret=
cas.authn.pac4j.facebook.scope=

LinkedIn

Delegate authentication to LinkedIn.

cas.authn.pac4j.linkedIn.fields=
cas.authn.pac4j.linkedIn.id=
cas.authn.pac4j.linkedIn.secret=
cas.authn.pac4j.linkedIn.scope=

Twitter

Delegate authentication to Twitter.

cas.authn.pac4j.twitter.id=
cas.authn.pac4j.twitter.secret=

Paypal

Delegate authentication to Paypal.

cas.authn.pac4j.paypal.id=
cas.authn.pac4j.paypal.secret=

Wordpress

Delegate authentication to Wordpress.

cas.authn.pac4j.wordpress.id=
cas.authn.pac4j.wordpress.secret=

OAuth20

Delegate authentication to an generic OAuth2 server.

cas.authn.pac4j.oauth2[0].id=
cas.authn.pac4j.oauth2[0].secret=
cas.authn.pac4j.oauth2[0].authUrl=
cas.authn.pac4j.oauth2[0].tokenUrl=
cas.authn.pac4j.oauth2[0].profileUrl=
cas.authn.pac4j.oauth2[0].profilePath=
cas.authn.pac4j.oauth2[0].profileVerb=GET|POST
cas.authn.pac4j.oauth2[0].profileAttrs.attr1=path-to-attr-in-profile
cas.authn.pac4j.oauth2[0].customParams.param1=value1

OpenID Connect

Delegate authentication to an external OpenID Connect server.

cas.authn.pac4j.oidc[0].type=GOOGLE|AZURE|GENERIC
cas.authn.pac4j.oidc[0].discoveryUri=
cas.authn.pac4j.oidc[0].maxClockSkew=
cas.authn.pac4j.oidc[0].scope=
cas.authn.pac4j.oidc[0].id=
cas.authn.pac4j.oidc[0].secret=
cas.authn.pac4j.oidc[0].useNonce=
cas.authn.pac4j.oidc[0].preferredJwsAlgorithm=
cas.authn.pac4j.oidc[0].customParams.param1=value1

SAML

Delegate authentication to an external SAML2 IdP (do not use the resource: or classpath:
prefixes for the keystorePath or identityProviderMetadataPath property).

Settings required for CAS SP metadata generation process
The keystore will be automatically generated by CAS with
keys required for the metadata generation and/or exchange.
#
cas.authn.pac4j.saml[0].keystorePassword=
cas.authn.pac4j.saml[0].privateKeyPassword=
cas.authn.pac4j.saml[0].keystorePath=

The entityID assigned to CAS acting as the SP
cas.authn.pac4j.saml[0].serviceProviderEntityId=

Path to the auto-generated CAS SP metadata
cas.authn.pac4j.saml[0].serviceProviderMetadataPath=

cas.authn.pac4j.saml[0].maximumAuthenticationLifetime=

Path/URL to delegated IdP metadata
cas.authn.pac4j.saml[0].identityProviderMetadataPath=

Examine the generated metadata after accessing the CAS login screen to ensure all ports and endpoints are correctly adjusted.Finally, share the CAS SP metadata with the delegated IdP and register CAS as an authorized relying party.

Yahoo

Delegate authentication to Yahoo.

cas.authn.pac4j.yahoo.id=
cas.authn.pac4j.yahoo.secret=

Dropbox

Delegate authentication to Dropbox.

cas.authn.pac4j.dropbox.id=
cas.authn.pac4j.dropbox.secret=

Github

Delegate authentication to Github.

cas.authn.pac4j.github.id=
cas.authn.pac4j.github.secret=

Foursquare

Delegate authentication to Foursquare.

cas.authn.pac4j.foursquare.id=
cas.authn.pac4j.foursquare.secret=

WindowsLive

Delegate authentication to WindowsLive.

cas.authn.pac4j.windowsLive.id=
cas.authn.pac4j.windowsLive.secret=

Google

Delegate authentication to Google.

cas.authn.pac4j.google.id=
cas.authn.pac4j.google.secret=
cas.authn.pac4j.google.scope=EMAIL|PROFILE|EMAIL_AND_PROFILE

WS Federation

Allow CAS to act as an identity provider and security token service
to support the WS-Federation protocol.

To learn more about this topic, please review this guide

cas.authn.wsfedIdP.idp.realm=urn:org:apereo:cas:ws:idp:realm-CAS
cas.authn.wsfedIdP.idp.realmName=CAS

cas.authn.wsfedIdP.sts.signingKeystoreFile=/etc/cas/config/ststrust.jks
cas.authn.wsfedIdP.sts.signingKeystorePassword=storepass
cas.authn.wsfedIdP.sts.encryptionKeystoreFile=/etc/cas/config/stsencrypt.jks
cas.authn.wsfedIdP.sts.encryptionKeystorePassword=storepass

cas.authn.wsfedIdP.sts.subjectNameIdFormat=unspecified
cas.authn.wsfedIdP.sts.encryptTokens=true

cas.authn.wsfedIdP.sts.realm.keystoreFile=/etc/cas/config/stscasrealm.jks
cas.authn.wsfedIdP.sts.realm.keystorePassword=storepass
cas.authn.wsfedIdP.sts.realm.keystoreAlias=realmcas
cas.authn.wsfedIdP.sts.realm.keyPassword=cas
cas.authn.wsfedIdP.sts.realm.issuer=CAS

Signing & Encryption

Used to secure authentication requests between the IdP and STS
cas.authn.wsfedIdP.sts.encryptionKey=
cas.authn.wsfedIdP.sts.signingKey=

The signing and encryption keys are both JWKs of size 512 and 256.
The encryption algorithm is set to AES_128_CBC_HMAC_SHA_256.

OAuth2

Allows CAS to act as an OAuth2 provider. Here you can control how
long various tokens issued by CAS should last, etc.

To learn more about this topic, please review this guide.

cas.authn.oauth.refreshToken.timeToKillInSeconds=2592000

cas.authn.oauth.code.timeToKillInSeconds=30
cas.authn.oauth.code.numberOfUses=1

cas.authn.oauth.accessToken.releaseProtocolAttributes=true
cas.authn.oauth.accessToken.timeToKillInSeconds=7200
cas.authn.oauth.accessToken.maxTimeToLiveInSeconds=28800

cas.authn.oauth.grants.resourceOwner.requireServiceHeader=true

Localization

To learn more about this topic, please review this guide.

cas.locale.paramName=locale
cas.locale.defaultValue=en

Global SSO Behavior

cas.sso.missingService=true
cas.sso.renewedAuthn=true

Warning Cookie

Created by CAS if and when users are to be warned when accessing CAS protected services.

cas.warningCookie.path=
cas.warningCookie.maxAge=-1
cas.warningCookie.domain=
cas.warningCookie.name=CASPRIVACY
cas.warningCookie.secure=true
cas.warningCookie.httpOnly=true

Ticket Granting Cookie

cas.tgc.path=
cas.tgc.maxAge=-1
cas.tgc.domain=
cas.tgc.name=TGC
cas.tgc.secure=true
cas.tgc.httpOnly=true
cas.tgc.rememberMeMaxAge=1209600

cas.tgc.encryptionKey=
cas.tgc.signingKey=
cas.tgc.cipherEnabled=true

Signing & Encryption

The signing and encryption keys are both JWKs of size 512 and 256.
The encryption algorithm is set to AES_128_CBC_HMAC_SHA_256.

Logout

Control various settings related to CAS logout functionality.
To learn more about this topic, please review this guide.

cas.logout.followServiceRedirects=false
cas.logout.redirectParameter=service
cas.logout.confirmLogout=false

Single Logout

To learn more about this topic, please review this guide.

cas.slo.disabled=false
cas.slo.asynchronous=true

Clearpass

Capture and cache user credentials and optionally release them to trusted applications.
To learn more about this topic, please review this guide.

Usage Warning!ClearPass is turned off by default.
Think VERY CAREFULLY before turning on this feature, as it MUST be
the last resort in getting an integration to work...maybe not even then.

cas.clearpass.cacheCredential=false
cas.clearpass.encryptionKey=
cas.clearpass.signingKey=
cas.clearpass.cipherEnabled=true;

The signing and encryption keys are both JWKs of size 512 and 256.
The encryption algorithm is set to AES_128_CBC_HMAC_SHA_256.

Message Bundles

To learn more about this topic, please review this guide.

cas.messageBundle.encoding=UTF-8
cas.messageBundle.fallbackSystemLocale=false
cas.messageBundle.cacheSeconds=180
cas.messageBundle.useCodeMessage=true
cas.messageBundle.baseNames=classpath:custom_messages,classpath:messages

Audits

Control how audit messages are formatted.
To learn more about this topic, please review this guide.

cas.audit.auditFormat=DEFAULT
cas.audit.ignoreAuditFailures=false
cas.audit.singlelineSeparator=|
cas.audit.useSingleLine=false
cas.audit.appCode=CAS
cas.audit.alternateServerAddrHeaderName=
cas.audit.alternateClientAddrHeaderName=X-Forwarded-For
cas.audit.useServerHostAddress=false

Database Audits

Store audit logs inside a database.

cas.audit.jdbc.healthQuery=
cas.audit.jdbc.isolateInternalQueries=false
cas.audit.jdbc.url=jdbc:hsqldb:mem:cas-hsql-database
cas.audit.jdbc.failFast=true
cas.audit.jdbc.isolationLevelName=ISOLATION_READ_COMMITTED
cas.audit.jdbc.dialect=org.hibernate.dialect.HSQLDialect
cas.audit.jdbc.leakThreshold=10
cas.audit.jdbc.propagationBehaviorName=PROPAGATION_REQUIRED
cas.audit.jdbc.batchSize=1
cas.audit.jdbc.user=sa
cas.audit.jdbc.ddlAuto=create-drop
cas.audit.jdbc.maxAgeDays=180
cas.audit.jdbc.password=
cas.audit.jdbc.autocommit=false
cas.audit.jdbc.driverClass=org.hsqldb.jdbcDriver
cas.audit.jdbc.idleTimeout=5000
cas.audit.jdbc.dataSourceName=
cas.audit.jdbc.dataSourceProxy=false

cas.audit.jdbc.pool.suspension=false
cas.audit.jdbc.pool.minSize=6
cas.audit.jdbc.pool.maxSize=18
cas.audit.jdbc.pool.maxWait=2000

Sleuth Distributed Tracing

To learn more about this topic, please review this guide.

spring.sleuth.sampler.percentage = 0.5
spring.sleuth.enabled=true

spring.zipkin.enabled=true
spring.zipkin.baseUrl=http://localhost:9411/

Monitoring

To learn more about this topic, please review this guide.

Ticket Granting Tickets

Decide how CAS should monitor the generation of TGTs.

cas.monitor.tgt.warn.threshold=10
cas.monitor.tgt.warn.evictionThreshold=0

Service Tickets

Decide how CAS should monitor the generation of STs.

cas.monitor.st.warn.threshold=10
cas.monitor.st.warn.evictionThreshold=0

Cache Monitors

Decide how CAS should monitor the internal state of various cache storage services.

cas.monitor.warn.threshold=10
cas.monitor.warn.evictionThreshold=0

Database Monitoring

Decide how CAS should monitor the internal state of JDBC connections used
for authentication or attribute retrieval.

cas.monitor.jdbc.validationQuery=SELECT 1
cas.monitor.jdbc.maxWait=5000
cas.monitor.jdbc.healthQuery=
cas.monitor.jdbc.isolateInternalQueries=false
cas.monitor.jdbc.url=jdbc:hsqldb:mem:cas-hsql-database
cas.monitor.jdbc.failFast=true
cas.monitor.jdbc.isolationLevelName=ISOLATION_READ_COMMITTED
cas.monitor.jdbc.dialect=org.hibernate.dialect.HSQLDialect
cas.monitor.jdbc.leakThreshold=10
cas.monitor.jdbc.propagationBehaviorName=PROPAGATION_REQUIRED
cas.monitor.jdbc.batchSize=1
cas.monitor.jdbc.user=sa
cas.monitor.jdbc.ddlAuto=create-drop
cas.monitor.jdbc.maxAgeDays=180
cas.monitor.jdbc.password=
cas.monitor.jdbc.autocommit=false
cas.monitor.jdbc.driverClass=org.hsqldb.jdbcDriver
cas.monitor.jdbc.idleTimeout=5000
cas.monitor.jdbc.dataSourceName=
cas.monitor.jdbc.dataSourceProxy=false

LDAP Connection Pool

Decide how CAS should monitor the internal state of LDAP connections
used for authentication, etc.

Define the thread pool that will ping on the LDAP connection pool.
cas.monitor.ldap.pool.suspension=false
cas.monitor.ldap.pool.minSize=6
cas.monitor.ldap.pool.maxSize=18
cas.monitor.ldap.pool.maxWait=2000

cas.monitor.ldap.maxWait=5000

Define the LDAP connection pool settings for monitoring
cas.monitor.ldap.ldapUrl=ldaps://ldap1.example.edu ldaps://ldap2.example.edu
cas.monitor.ldap.connectionStrategy=
cas.monitor.ldap.baseDn=dc=example,dc=org
cas.monitor.ldap.userFilter=cn={user}
cas.monitor.ldap.bindDn=cn=Directory Manager,dc=example,dc=org
cas.monitor.ldap.bindCredential=Password
cas.monitor.ldap.providerClass=org.ldaptive.provider.unboundid.UnboundIDProvider
cas.monitor.ldap.connectTimeout=5000
cas.monitor.ldap.trustCertificates=
cas.monitor.ldap.keystore=
cas.monitor.ldap.keystorePassword=
cas.monitor.ldap.keystoreType=JKS|JCEKS|PKCS12
cas.monitor.ldap.poolPassivator=NONE|CLOSE|BIND
cas.monitor.ldap.minPoolSize=3
cas.monitor.ldap.maxPoolSize=10
cas.monitor.ldap.validateOnCheckout=true
cas.monitor.ldap.validatePeriodically=true
cas.monitor.ldap.validatePeriod=600
cas.monitor.ldap.validateTimeout=5000
cas.monitor.ldap.failFast=true
cas.monitor.ldap.idleTime=500
cas.monitor.ldap.prunePeriod=600
cas.monitor.ldap.blockWaitTime=5000
cas.monitor.ldap.subtreeSearch=true
cas.monitor.ldap.useSsl=true
cas.monitor.ldap.useStartTls=false

cas.monitor.ldap.validator.type=NONE|SEARCH|COMPARE
cas.monitor.ldap.validator.baseDn=
cas.monitor.ldap.validator.searchFilter=(objectClass=*)
cas.monitor.ldap.validator.scope=OBJECT|ONELEVEL|SUBTREE
cas.monitor.ldap.validator.attributeName=objectClass
cas.monitor.ldap.validator.attributeValues=top
cas.monitor.ldap.validator.dn=

Memory

Decide how CAS should monitor the internal state of JVM memory available at runtime.

cas.monitor.freeMemThreshold=10

Themes

To learn more about this topic, please review this guide.

cas.theme.paramName=theme
cas.theme.defaultThemeName=cas-theme-default

Events

Decide how CAS should track authentication events.
To learn more about this topic, please review this guide.

Whether geolocation tracking should be turned on and requested from the browser.
cas.events.trackGeolocation=false

Control whether CAS should monitor configuration files and auto-refresh context.
cas.events.trackConfigurationModifications=true

Database Events

Decide how CAS should store authentication events inside a database instance.

cas.events.jpa.healthQuery=
cas.events.jpa.isolateInternalQueries=false
cas.events.jpa.url=jdbc:hsqldb:mem:cas-events
cas.events.jpa.failFast=true
cas.events.jpa.dialect=org.hibernate.dialect.HSQLDialect
cas.events.jpa.leakThreshold=10
cas.events.jpa.batchSize=1
cas.events.jpa.defaultCatalog=
cas.events.jpa.defaultSchema=
cas.events.jpa.user=sa
cas.events.jpa.ddlAuto=create-drop
cas.events.jpa.password=
cas.events.jpa.autocommit=false
cas.events.jpa.driverClass=org.hsqldb.jdbcDriver
cas.events.jpa.idleTimeout=5000
cas.events.jpa.dataSourceName=
cas.events.jpa.dataSourceProxy=false

cas.events.jpa.pool.suspension=false
cas.events.jpa.pool.minSize=6
cas.events.jpa.pool.maxSize=18
cas.events.jpa.pool.maxWait=2000

MongoDb Events

Decide how CAS should store authentication events inside a MongoDb instance.

cas.events.mongodb.clientUri=
cas.events.mongodb.dropCollection=false
cas.events.mongodb.collection=MongoDbCasEventRepository

Http Web Requests

Control how CAS should respond and validate incoming HTTP requests.

cas.httpWebRequest.header.xframe=true
cas.httpWebRequest.header.xss=true
cas.httpWebRequest.header.hsts=true
cas.httpWebRequest.header.xcontent=true
cas.httpWebRequest.header.cache=true

cas.httpWebRequest.cors.enabled=false
cas.httpWebRequest.cors.allowCredentials=false
cas.httpWebRequest.cors.allowOrigins[0]=
cas.httpWebRequest.cors.allowMethods[0]=*
cas.httpWebRequest.cors.allowHeaders[0]=*
cas.httpWebRequest.cors.maxAge=3600
cas.httpWebRequest.cors.exposedHeaders[0]=

cas.httpWebRequest.web.forceEncoding=true
cas.httpWebRequest.web.encoding=UTF-8

cas.httpWebRequest.allowMultiValueParameters=false
cas.httpWebRequest.onlyPostParams=username,password
cas.httpWebRequest.paramsToCheck=ticket,service,renew,gateway,warn,method,target,SAMLart,pgtUrl,pgt,pgtId,pgtIou,targetService,entityId,token

spring.http.encoding.charset=UTF-8
spring.http.encoding.enabled=true
spring.http.encoding.force=true

Http Client

Control how CAS should attempt to contact resources on the web
via its own Http Client. This is most commonly used when responding
to ticket validation events and/or single logout.

In the event that local certificates are to be imported into the CAS running environment,
a local truststore is provided by CAS to improve portability of configuration across environments.

cas.httpClient.connectionTimeout=5000
cas.httpClient.asyncTimeout=5000
cas.httpClient.readTimeout=5000
cas.httpClient.hostnameVerifier=NONE|DEFAULT

cas.httpClient.truststore.psw=changeit
cas.httpClient.truststore.file=classpath:/truststore.jks

Hostname Verification

The default options are avaiable for hostname verification:

| Type | Description|————————-|————————————–
| NONE | Ignore hostname verification.
| DEFAULT | Enforce hostname verification.

Service Registry

cas.serviceRegistry.watcherEnabled=true
cas.serviceRegistry.repeatInterval=120000
cas.serviceRegistry.startDelay=15000
cas.serviceRegistry.initFromJson=false

Resource-based (JSON/YAML) Service Registry

If the underlying service registry is using local system resources
to locate service definitions, decide how those resources should be found.

cas.serviceRegistry.config.location=classpath:/services

To learn more about this topic, please review this guide
or this guide.

DynamoDb Service Registry

To learn more about this topic, please review this guide.

Path to an external properties file that contains 'accessKey' and 'secretKey' fields.
cas.serviceRegistry.dynamoDb.credentialsPropertiesFile=file:/path/to/file.properties

Alternatively, you may directly provide credentials to CAS
cas.serviceRegistry.dynamoDb.credentialAccessKey=
cas.serviceRegistry.dynamoDb.credentialSecretKey=

cas.serviceRegistry.dynamoDb.endpoint=http://localhost:8000
cas.serviceRegistry.dynamoDb.region=US_WEST_2|US_EAST_2|EU_WEST_2|<REGION-NAME>
cas.serviceRegistry.dynamoDb.regionOverride=
cas.serviceRegistry.dynamoDb.serviceNameIntern=

cas.serviceRegistry.dynamoDb.dropTablesOnStartup=false
cas.serviceRegistry.dynamoDb.timeOffset=0

cas.serviceRegistry.dynamoDb.readCapacity=10
cas.serviceRegistry.dynamoDb.writeCapacity=10
cas.serviceRegistry.dynamoDb.connectionTimeout=5000
cas.serviceRegistry.dynamoDb.requestTimeout=5000
cas.serviceRegistry.dynamoDb.socketTimeout=5000
cas.serviceRegistry.dynamoDb.useGzip=false
cas.serviceRegistry.dynamoDb.useReaper=false
cas.serviceRegistry.dynamoDb.useThrottleRetries=false
cas.serviceRegistry.dynamoDb.useTcpKeepAlive=false
cas.serviceRegistry.dynamoDb.protocol=HTTPS
cas.serviceRegistry.dynamoDb.clientExecutionTimeout=10000
cas.serviceRegistry.dynamoDb.cacheResponseMetadata=false
cas.serviceRegistry.dynamoDb.localAddress=
cas.serviceRegistry.dynamoDb.maxConnections=10

cas.serviceRegistry.dynamoDb.crypto.signing.key=
cas.serviceRegistry.dynamoDb.crypto.signing.keySize=512
cas.serviceRegistry.dynamoDb.crypto.encryption.key=
cas.serviceRegistry.dynamoDb.crypto.encryption.keySize=16
cas.serviceRegistry.dynamoDb.crypto.alg=AES

MongoDb Service Registry

Store CAS service definitions inside a MongoDb instance.
To learn more about this topic, please review this guide.

cas.serviceRegistry.mongo.idleTimeout=30000
cas.serviceRegistry.mongo.port=27017
cas.serviceRegistry.mongo.dropCollection=false
cas.serviceRegistry.mongo.socketKeepAlive=false
cas.serviceRegistry.mongo.password=
cas.serviceRegistry.mongo.collectionName=cas-service-registry
cas.serviceRegistry.mongo.databaseName=cas-mongo-database
cas.serviceRegistry.mongo.timeout=5000
cas.serviceRegistry.mongo.userId=
cas.serviceRegistry.mongo.writeConcern=NORMAL
cas.serviceRegistry.mongo.host=localhost

cas.serviceRegistry.mongo.conns.lifetime=60000
cas.serviceRegistry.mongo.conns.perHost=10

LDAP Service Registry

Control how CAS services should be found inside an LDAP instance.
To learn more about this topic, please review this guide

cas.serviceRegistry.ldap.serviceDefinitionAttribute=description
cas.serviceRegistry.ldap.idAttribute=uid
cas.serviceRegistry.ldap.objectClass=casRegisteredService

cas.serviceRegistry.ldap.ldapUrl=ldaps://ldap1.example.edu ldaps://ldap2.example.edu
cas.serviceRegistry.ldap.connectionStrategy=
cas.serviceRegistry.ldap.baseDn=dc=example,dc=org
cas.serviceRegistry.ldap.bindDn=cn=Directory Manager,dc=example,dc=org
cas.serviceRegistry.ldap.bindCredential=Password
cas.serviceRegistry.ldap.providerClass=org.ldaptive.provider.unboundid.UnboundIDProvider
cas.serviceRegistry.ldap.connectTimeout=5000
cas.serviceRegistry.ldap.trustCertificates=
cas.serviceRegistry.ldap.keystore=
cas.serviceRegistry.ldap.keystorePassword=
cas.serviceRegistry.ldap.keystoreType=JKS|JCEKS|PKCS12
cas.serviceRegistry.ldap.poolPassivator=NONE|CLOSE|BIND
cas.serviceRegistry.ldap.minPoolSize=3
cas.serviceRegistry.ldap.maxPoolSize=10
cas.serviceRegistry.ldap.validateOnCheckout=true
cas.serviceRegistry.ldap.validatePeriodically=true
cas.serviceRegistry.ldap.validatePeriod=600
cas.serviceRegistry.ldap.validateTimeout=5000
cas.serviceRegistry.ldap.failFast=true
cas.serviceRegistry.ldap.idleTime=500
cas.serviceRegistry.ldap.prunePeriod=600
cas.serviceRegistry.ldap.blockWaitTime=5000
cas.serviceRegistry.ldap.useSsl=true
cas.serviceRegistry.ldap.useStartTls=false

cas.serviceRegistry.ldap.validator.type=NONE|SEARCH|COMPARE
cas.serviceRegistry.ldap.validator.baseDn=
cas.serviceRegistry.ldap.validator.searchFilter=(objectClass=*)
cas.serviceRegistry.ldap.validator.scope=OBJECT|ONELEVEL|SUBTREE
cas.serviceRegistry.ldap.validator.attributeName=objectClass
cas.serviceRegistry.ldap.validator.attributeValues=top
cas.serviceRegistry.ldap.validator.dn=

Couchbase Service Registry

Control how CAS services should be found inside a Couchbase instance.
To learn more about this topic, please review this guide

cas.serviceRegistry.couchbase.nodeSet=localhost:8091
cas.serviceRegistry.couchbase.password=
cas.serviceRegistry.couchbase.queryEnabled=true
cas.serviceRegistry.couchbase.bucket=default
cas.serviceRegistry.couchbase.timeout=10

Database Service Registry

Control how CAS services should be found inside a database instance.
To learn more about this topic, please review this guide

cas.serviceRegistry.jpa.healthQuery=
cas.serviceRegistry.jpa.isolateInternalQueries=false
cas.serviceRegistry.jpa.url=jdbc:hsqldb:mem:cas-service-registry
cas.serviceRegistry.jpa.failFast=true
cas.serviceRegistry.jpa.dialect=org.hibernate.dialect.HSQLDialect
cas.serviceRegistry.jpa.leakThreshold=10
cas.serviceRegistry.jpa.batchSize=1
cas.serviceRegistry.jpa.user=sa
cas.serviceRegistry.jpa.ddlAuto=create-drop
cas.serviceRegistry.jpa.password=
cas.serviceRegistry.jpa.autocommit=false
cas.serviceRegistry.jpa.driverClass=org.hsqldb.jdbcDriver
cas.serviceRegistry.jpa.idleTimeout=5000
cas.serviceRegistry.jpa.dataSourceName=
cas.serviceRegistry.jpa.dataSourceProxy=false

cas.serviceRegistry.jpa.pool.suspension=false
cas.serviceRegistry.jpa.pool.minSize=6
cas.serviceRegistry.jpa.pool.maxSize=18
cas.serviceRegistry.jpa.pool.maxWait=2000

Ticket Registry

To learn more about this topic, please review this guide.

Signing & Encryption

The encryption key must be randomly-generated string whose length is defined by the encryption key size setting.
The signing key is a JWK whose length is defined by the signing key size setting.

Cleaner

A cleaner process is scheduled to run in the background to clean up expired and stale tickets.
This section controls how that process should behave.

cas.ticket.registry.cleaner.appId=cas-ticket-registry-cleaner
cas.ticket.registry.cleaner.startDelay=10000
cas.ticket.registry.cleaner.repeatInterval=60000
cas.ticket.registry.cleaner.enabled=true

JPA Ticket Registry

To learn more about this topic, please review this guide.

cas.ticket.registry.jpa.ticketLockType=NONE
cas.ticket.registry.jpa.jpaLockingTimeout=3600

cas.ticket.registry.jpa.healthQuery=
cas.ticket.registry.jpa.isolateInternalQueries=false
cas.ticket.registry.jpa.url=jdbc:hsqldb:mem:cas-ticket-registry
cas.ticket.registry.jpa.failFast=true
cas.ticket.registry.jpa.dialect=org.hibernate.dialect.HSQLDialect
cas.ticket.registry.jpa.leakThreshold=10
cas.ticket.registry.jpa.jpaLockingTgtEnabled=true
cas.ticket.registry.jpa.batchSize=1
cas.ticket.registry.jpa.defaultCatalog=
cas.ticket.registry.jpa.defaultSchema=
cas.ticket.registry.jpa.user=sa
cas.ticket.registry.jpa.ddlAuto=create-drop
cas.ticket.registry.jpa.password=
cas.ticket.registry.jpa.autocommit=false
cas.ticket.registry.jpa.driverClass=org.hsqldb.jdbcDriver
cas.ticket.registry.jpa.idleTimeout=5000
cas.ticket.registry.jpa.dataSourceName=
cas.ticket.registry.jpa.dataSourceProxy=false

cas.ticket.registry.jpa.pool.suspension=false
cas.ticket.registry.jpa.pool.minSize=6
cas.ticket.registry.jpa.pool.maxSize=18
cas.ticket.registry.jpa.pool.maxWait=2000

cas.ticket.registry.jpa.crypto.signing.key=
cas.ticket.registry.jpa.crypto.signing.keySize=512
cas.ticket.registry.jpa.crypto.encryption.key=
cas.ticket.registry.jpa.crypto.encryption.keySize=16
cas.ticket.registry.jpa.crypto.alg=AES

Couchbase Ticket Registry

To learn more about this topic, please review this guide.

cas.ticket.registry.couchbase.timeout=10
cas.ticket.registry.couchbase.nodeSet=localhost:8091
cas.ticket.registry.couchbase.password=
cas.ticket.registry.couchbase.queryEnabled=true
cas.ticket.registry.couchbase.bucket=default

cas.ticket.registry.couchbase.crypto.signing.key=
cas.ticket.registry.couchbase.crypto.signing.keySize=512
cas.ticket.registry.couchbase.crypto.encryption.key=
cas.ticket.registry.couchbase.crypto.encryption.keySize=16
cas.ticket.registry.couchbase.crypto.alg=AES

Hazelcast Ticket Registry

To learn more about this topic, please review this guide.

cas.ticket.registry.hazelcast.pageSize=500
cas.ticket.registry.hazelcast.configLocation=

cas.ticket.registry.hazelcast.cluster.evictionPolicy=LRU
cas.ticket.registry.hazelcast.cluster.maxNoHeartbeatSeconds=300
cas.ticket.registry.hazelcast.cluster.multicastEnabled=false
cas.ticket.registry.hazelcast.cluster.tcpipEnabled=true
cas.ticket.registry.hazelcast.cluster.members=localhost
cas.ticket.registry.hazelcast.cluster.loggingType=slf4j
cas.ticket.registry.hazelcast.cluster.instanceName=localhost
cas.ticket.registry.hazelcast.cluster.port=5701
cas.ticket.registry.hazelcast.cluster.portAutoIncrement=true
cas.ticket.registry.hazelcast.cluster.maxHeapSizePercentage=85
cas.ticket.registry.hazelcast.cluster.backupCount=1
cas.ticket.registry.hazelcast.cluster.asyncBackupCount=0
cas.ticket.registry.hazelcast.cluster.maxSizePolicy=USED_HEAP_PERCENTAGE
cas.ticket.registry.hazelcast.cluster.timeout=5

cas.ticket.registry.hazelcast.cluster.multicastTrustedInterfaces=
cas.ticket.registry.hazelcast.cluster.multicastPort=
cas.ticket.registry.hazelcast.cluster.multicastGroup=
cas.ticket.registry.hazelcast.cluster.multicastTimeout=2
cas.ticket.registry.hazelcast.cluster.multicastTimeToLive=32

cas.ticket.registry.hazelcast.crypto.signing.key=
cas.ticket.registry.hazelcast.crypto.signing.keySize=512
cas.ticket.registry.hazelcast.crypto.encryption.key=
cas.ticket.registry.hazelcast.crypto.encryption.keySize=16
cas.ticket.registry.hazelcast.crypto.alg=AES

Infinispan Ticket Registry

To learn more about this topic, please review this guide.

cas.ticket.registry.infinispan.cacheName=
cas.ticket.registry.infinispan.configLocation=/infinispan.xml

cas.ticket.registry.infinispan.crypto.signing.key=
cas.ticket.registry.infinispan.crypto.signing.keySize=512
cas.ticket.registry.infinispan.crypto.encryption.key=
cas.ticket.registry.infinispan.crypto.encryption.keySize=16
cas.ticket.registry.infinispan.crypto.alg=AES

InMemory Ticket Registry

This is typically the default ticket registry instance where tickets
are kept inside the runtime environment memory.

cas.ticket.registry.inMemory.loadFactor=1
cas.ticket.registry.inMemory.concurrency=20
cas.ticket.registry.inMemory.initialCapacity=1000

cas.ticket.registry.inMemory.crypto.signing.key=
cas.ticket.registry.inMemory.crypto.signing.keySize=512
cas.ticket.registry.inMemory.crypto.encryption.key=
cas.ticket.registry.inMemory.crypto.encryption.keySize=16
cas.ticket.registry.inMemory.crypto.alg=AES

Ehcache Ticket Registry

To learn more about this topic, please review this guide.

cas.ticket.registry.ehcache.replicateUpdatesViaCopy=true
cas.ticket.registry.ehcache.cacheManagerName=ticketRegistryCacheManager
cas.ticket.registry.ehcache.replicatePuts=true
cas.ticket.registry.ehcache.replicateUpdates=true
cas.ticket.registry.ehcache.memoryStoreEvictionPolicy=LRU
cas.ticket.registry.ehcache.configLocation=classpath:/ehcache-replicated.xml
cas.ticket.registry.ehcache.maximumBatchSize=100
cas.ticket.registry.ehcache.shared=false
cas.ticket.registry.ehcache.replicationInterval=10000
cas.ticket.registry.ehcache.cacheTimeToLive=2147483647
cas.ticket.registry.ehcache.diskExpiryThreadIntervalSeconds=0
cas.ticket.registry.ehcache.replicateRemovals=true
cas.ticket.registry.ehcache.maxChunkSize=5000000
cas.ticket.registry.ehcache.maxElementsOnDisk=0
cas.ticket.registry.ehcache.maxElementsInCache=0
cas.ticket.registry.ehcache.maxElementsInMemory=10000
cas.ticket.registry.ehcache.cacheName=org.apereo.cas.ticket.TicketCache
cas.ticket.registry.ehcache.eternal=false
cas.ticket.registry.ehcache.loaderAsync=true
cas.ticket.registry.ehcache.replicatePutsViaCopy=true
cas.ticket.registry.ehcache.cacheTimeToIdle=0
cas.ticket.registry.ehcache.persistence=LOCALTEMPSWAP|NONE|LOCALRESTARTABLE|DISTRIBUTED
cas.ticket.registry.ehcache.synchronousWrites=

cas.ticket.registry.ehcache.crypto.signing.key=
cas.ticket.registry.ehcache.crypto.signing.keySize=512
cas.ticket.registry.ehcache.crypto.encryption.key=
cas.ticket.registry.ehcache.crypto.encryption.keySize=16
cas.ticket.registry.ehcache.crypto.alg=AES

Ignite Ticket Registry

To learn more about this topic, please review this guide.

cas.ticket.registry.ignite.keyAlgorithm=
cas.ticket.registry.ignite.protocol=
cas.ticket.registry.ignite.trustStorePassword=
cas.ticket.registry.ignite.keyStoreType=
cas.ticket.registry.ignite.keyStoreFilePath=
cas.ticket.registry.ignite.keyStorePassword=
cas.ticket.registry.ignite.trustStoreType=
cas.ticket.registry.ignite.igniteAddresses=localhost:47500
cas.ticket.registry.ignite.trustStoreFilePath=
cas.ticket.registry.ignite.heartbeatFrequency=2000
cas.ticket.registry.ignite.joinTimeout=1000
cas.ticket.registry.ignite.localAddress=
cas.ticket.registry.ignite.localPort=-1
cas.ticket.registry.ignite.networkTimeout=5000
cas.ticket.registry.ignite.socketTimeout=5000
cas.ticket.registry.ignite.threadPriority=10
cas.ticket.registry.ignite.forceServerMode=false

cas.ticket.registry.ignite.ticketsCache.writeSynchronizationMode=FULL_SYNC
cas.ticket.registry.ignite.ticketsCache.atomicityMode=TRANSACTIONAL
cas.ticket.registry.ignite.ticketsCache.cacheName=TicketsCache
cas.ticket.registry.ignite.ticketsCache.cacheMode=REPLICATED

cas.ticket.registry.ignite.crypto.signing.key=
cas.ticket.registry.ignite.crypto.signing.keySize=512
cas.ticket.registry.ignite.crypto.encryption.key=
cas.ticket.registry.ignite.crypto.encryption.keySize=16
cas.ticket.registry.ignite.crypto.alg=AES

Memcached Ticket Registry

To learn more about this topic, please review this guide.

cas.ticket.registry.memcached.servers=localhost:11211
cas.ticket.registry.memcached.locatorType=ARRAY_MOD
cas.ticket.registry.memcached.failureMode=Redistribute
cas.ticket.registry.memcached.hashAlgorithm=FNV1_64_HASH

cas.ticket.registry.memcached.crypto.signing.key=
cas.ticket.registry.memcached.crypto.signing.keySize=512
cas.ticket.registry.memcached.crypto.encryption.key=
cas.ticket.registry.memcached.crypto.encryption.keySize=16
cas.ticket.registry.memcached.crypto.alg=AES

DynamoDb Ticket Registry

To learn more about this topic, please review this guide.

Path to an external properties file that contains 'accessKey' and 'secretKey' fields.
cas.ticket.registry.dynamoDb.credentialsPropertiesFile=file:/path/to/file.properties

Alternatively, you may directly provide credentials to CAS
cas.ticket.registry.dynamoDb.credentialAccessKey=
cas.ticket.registry.dynamoDb.credentialSecretKey=

cas.ticket.registry.dynamoDb.endpoint=http://localhost:8000
cas.ticket.registry.dynamoDb.region=US_WEST_2|US_EAST_2|EU_WEST_2|<REGION-NAME>
cas.ticket.registry.dynamoDb.regionOverride=
cas.ticket.registry.dynamoDb.serviceNameIntern=

cas.ticket.registry.dynamoDb.dropTablesOnStartup=false
cas.ticket.registry.dynamoDb.timeOffset=0

cas.ticket.registry.dynamoDb.readCapacity=10
cas.ticket.registry.dynamoDb.writeCapacity=10
cas.ticket.registry.dynamoDb.connectionTimeout=5000
cas.ticket.registry.dynamoDb.requestTimeout=5000
cas.ticket.registry.dynamoDb.socketTimeout=5000
cas.ticket.registry.dynamoDb.useGzip=false
cas.ticket.registry.dynamoDb.useReaper=false
cas.ticket.registry.dynamoDb.useThrottleRetries=false
cas.ticket.registry.dynamoDb.useTcpKeepAlive=false
cas.ticket.registry.dynamoDb.protocol=HTTPS
cas.ticket.registry.dynamoDb.clientExecutionTimeout=10000
cas.ticket.registry.dynamoDb.cacheResponseMetadata=false
cas.ticket.registry.dynamoDb.localAddress=
cas.ticket.registry.dynamoDb.maxConnections=10

cas.ticket.registry.dynamoDb.crypto.signing.key=
cas.ticket.registry.dynamoDb.crypto.signing.keySize=512
cas.ticket.registry.dynamoDb.crypto.encryption.key=
cas.ticket.registry.dynamoDb.crypto.encryption.keySize=16
cas.ticket.registry.dynamoDb.crypto.alg=AES

MongoDb Ticket Registry

To learn more about this topic, please review this guide.

cas.ticket.registry.mongo.idleTimeout=30000
cas.ticket.registry.mongo.port=27017
cas.ticket.registry.mongo.dropCollection=false
cas.ticket.registry.mongo.socketKeepAlive=false
cas.ticket.registry.mongo.password=
cas.ticket.registry.mongo.collectionName=cas-ticket-registry
cas.ticket.registry.mongo.databaseName=cas-database
cas.ticket.registry.mongo.timeout=5000
cas.ticket.registry.mongo.userId=
cas.ticket.registry.mongo.writeConcern=NORMAL
cas.ticket.registry.mongo.host=localhost

cas.ticket.mongo.conns.lifetime=60000
cas.ticket.mongo.conns.perHost=10

Redis Ticket Registry

To learn more about this topic, please review this guide.

Redis server host.
cas.ticket.registry.redis.host=localhost
#
Database index used by the connection factory.
cas.ticket.registry.redis.database=0
#
Redis server port.
cas.ticket.registry.redis.port=6379
#
Login password of the redis server.
cas.ticket.registry.redis.password=
#
Connection timeout in milliseconds
cas.ticket.registry.redis.timeout=
#
##
cas.ticket.registry.redis.pool.max-active=20
#
Max number of "idle" connections in the pool. Use a negative value to indicate an unlimited number of idle connections.
cas.ticket.registry.redis.pool.maxIdle=8
#
Target for the minimum number of idle connections to maintain in the pool. This setting only has an effect if it is positive.
cas.ticket.registry.redis.pool.minIdle=0
#
Max number of connections that can be allocated by the pool at a given time. Use a negative value for no limit.
cas.ticket.registry.redis.pool.maxActive=8
#
Maximum amount of time (in milliseconds) a connection allocation should block
before throwing an exception when the pool is exhausted. Use a negative value to block indefinitely.
cas.ticket.registry.redis.pool.maxWait=-1

cas.ticket.registry.redis.crypto.signing.key=
cas.ticket.registry.redis.crypto.signing.keySize=512
cas.ticket.registry.redis.crypto.encryption.key=
cas.ticket.registry.redis.crypto.encryption.keySize=16
cas.ticket.registry.redis.crypto.alg=AES

Protocol Ticket Security

Controls whether tickets issued by the CAS server should be secured via signing and encryption
when shared with client applications on outgoing calls.

cas.ticket.security.cipherEnabled=true
cas.ticket.security.encryptionKey=
cas.ticket.security.signingKey=

The signing and encryption keys are both JWKs of size 512 and 256.
The encryption algorithm is set to AES_128_CBC_HMAC_SHA_256.

Service Tickets Behavior

Controls the expiration policy of service tickets, as well as other properties
applicable to STs.

cas.ticket.st.maxLength=20

cas.ticket.st.numberOfUses=1
cas.ticket.st.timeToKillInSeconds=10

Proxy Granting Tickets Behavior

cas.ticket.pgt.maxLength=50

Proxy Tickets Behavior

cas.ticket.pt.timeToKillInSeconds=10
cas.ticket.pt.numberOfUses=1

Ticket Granting Tickets Behavior

cas.ticket.tgt.onlyTrackMostRecentSession=true
cas.ticket.tgt.maxLength=50

TGT Expiration Policy

Default

Provides a hard-time out as well as a sliding window.

Set to a negative value to never expire tickets
cas.ticket.tgt.maxTimeToLiveInSeconds=28800
cas.ticket.tgt.timeToKillInSeconds=7200

Remember Me

cas.ticket.tgt.rememberMe.enabled=true
cas.ticket.tgt.rememberMe.timeToKillInSeconds=28800

Timeout

The expiration policy applied to TGTs provides for most-recently-used expiration policy, similar to a Web server session timeout.

cas.ticket.tgt.timeout.maxTimeToLiveInSeconds=28800

Throttled Timeout

The throttled timeout policy extends the Timeout policy with the concept of throttling where a ticket may be used at most every N seconds.

cas.ticket.tgt.throttledTimeout.timeToKillInSeconds=28800
cas.ticket.tgt.throttledTimeout.timeInBetweenUsesInSeconds=5

Hard Timeout

The hard timeout policy provides for finite ticket lifetime as measured from the time of creation.

cas.ticket.tgt.hardTimeout.timeToKillInSeconds=28800

Management Webapp

To learn more about this topic, please review this guide.

server.contextPath=/cas-management

cas.mgmt.adminRoles[0]=ROLE_ADMIN
cas.mgmt.adminRoles[1]=ROLE_SUPER_USER

cas.mgmt.userPropertiesFile=classpath:/user-details.properties
cas.mgmt.serverName=https://localhost:8443
cas.mgmt.defaultLocale=en

cas.mgmt.authzAttributes[0]=memberOf
cas.mgmt.authzAttributes[1]=groupMembership

LDAP Authorization

cas.mgmt.ldap.ldapAuthz.groupAttribute=
cas.mgmt.ldap.ldapAuthz.groupPrefix=
cas.mgmt.ldap.ldapAuthz.groupFilter=
cas.mgmt.ldap.ldapAuthz.groupBaseDn=
cas.mgmt.ldap.ldapAuthz.rolePrefix=ROLE_
cas.mgmt.ldap.ldapAuthz.roleAttribute=uugid
cas.mgmt.ldap.ldapAuthz.searchFilter=cn={user}
cas.mgmt.ldap.ldapAuthz.baseDn=

cas.mgmt.ldap.allowMultipleResults=false
cas.mgmt.ldap.baseDn=dc=example,dc=org
cas.mgmt.ldap.ldapUrl=ldaps://ldap1.example.edu ldaps://ldap2.example.edu
cas.mgmt.ldap.connectionStrategy=
cas.mgmt.ldap.baseDn=dc=example,dc=org
cas.mgmt.ldap.userFilter=cn={user}
cas.mgmt.ldap.bindDn=cn=Directory Manager,dc=example,dc=org
cas.mgmt.ldap.bindCredential=Password
cas.mgmt.ldap.providerClass=org.ldaptive.provider.unboundid.UnboundIDProvider
cas.mgmt.ldap.connectTimeout=5000
cas.mgmt.ldap.trustCertificates=
cas.mgmt.ldap.keystore=
cas.mgmt.ldap.keystorePassword=
cas.mgmt.ldap.keystoreType=JKS|JCEKS|PKCS12
cas.mgmt.ldap.poolPassivator=NONE|CLOSE|BIND
cas.mgmt.ldap.minPoolSize=3
cas.mgmt.ldap.maxPoolSize=10
cas.mgmt.ldap.validateOnCheckout=true
cas.mgmt.ldap.validatePeriodically=true
cas.mgmt.ldap.validatePeriod=600
cas.mgmt.ldap.validateTimeout=5000
cas.mgmt.ldap.failFast=true
cas.mgmt.ldap.idleTime=500
cas.mgmt.ldap.prunePeriod=600
cas.mgmt.ldap.blockWaitTime=5000
cas.mgmt.ldap.subtreeSearch=true
cas.mgmt.ldap.useSsl=true
cas.mgmt.ldap.useStartTls=false

Google reCAPTCHA Integration

Display Google’s reCAPTCHA widget on the CAS login page.

cas.googleRecaptcha.verifyUrl=https://www.google.com/recaptcha/api/siteverify
cas.googleRecaptcha.siteKey=
cas.googleRecaptcha.secret=

Google Analytics Integration

To learn more about this topic, please review this guide.

cas.googleAnalytics.googleAnalyticsTrackingId=

Spring Webflow

Control how Spring Webflow’s conversational session state should be managed by CAS,
and all other webflow related settings.

To learn more about this topic, please review this guide or this guide.

cas.webflow.autoconfigure=true
cas.webflow.alwaysPauseRedirect=false
cas.webflow.refresh=true
cas.webflow.redirectSameState=false

cas.webflow.session.lockTimeout=30
cas.webflow.session.compress=false
cas.webflow.session.maxConversations=5
cas.webflow.session.storage=true

Manage session storage via Hazelcast
cas.webflow.session.hzLocation=classpath:/hazelcast.xml

Manage session storage via Mongo
spring.data.mongodb.host=mongo-srv
spring.data.mongodb.port=27018
spring.data.mongodb.database=prod

Manage session storage via Redis
spring.session.store-type=redis
spring.redis.host=localhost
spring.redis.password=secret
spring.redis.port=6379

cas.webflow.signing.key=
cas.webflow.signing.keySize=512
cas.webflow.encryption.keySize=16
cas.webflow.encryption.key=
cas.webflow.alg=AES

The encryption key must be randomly-generated string whose length is defined by the encryption key size setting.
The signing key is a JWK whose length is defined by the signing key size setting.

Authentication Exceptions

Map custom authentication exceptions in the CAS webflow and link them to custom messages defined in message bundles.

To learn more about this topic, please review this guide.

cas.authn.exceptions.exceptions=value1,value2,...

Acceptable Usage Policy

Decide how CAS should attempt to determine whether AUP is accepted.
To learn more about this topic, please review this guide.

cas.acceptableUsagePolicy.aupAttributeName=aupAccepted

LDAP

If AUP is controlled via LDAP, decide how choices should be remembered back inside the LDAP instance.

cas.acceptableUsagePolicy.ldap.ldapUrl=ldaps://ldap1.example.edu ldaps://ldap2.example.edu
cas.acceptableUsagePolicy.ldap.connectionStrategy=
cas.acceptableUsagePolicy.ldap.baseDn=dc=example,dc=org
cas.acceptableUsagePolicy.ldap.userFilter=cn={user}
cas.acceptableUsagePolicy.ldap.bindDn=cn=Directory Manager,dc=example,dc=org
cas.acceptableUsagePolicy.ldap.bindCredential=Password
cas.acceptableUsagePolicy.ldap.providerClass=org.ldaptive.provider.unboundid.UnboundIDProvider
cas.acceptableUsagePolicy.ldap.connectTimeout=5000
cas.acceptableUsagePolicy.ldap.trustCertificates=
cas.acceptableUsagePolicy.ldap.keystore=
cas.acceptableUsagePolicy.ldap.keystorePassword=
cas.acceptableUsagePolicy.ldap.keystoreType=JKS|JCEKS|PKCS12
cas.acceptableUsagePolicy.ldap.poolPassivator=NONE|CLOSE|BIND
cas.acceptableUsagePolicy.ldap.minPoolSize=3
cas.acceptableUsagePolicy.ldap.maxPoolSize=10
cas.acceptableUsagePolicy.ldap.validateOnCheckout=true
cas.acceptableUsagePolicy.ldap.validatePeriodically=true
cas.acceptableUsagePolicy.ldap.validatePeriod=600
cas.acceptableUsagePolicy.ldap.validateTimeout=5000
cas.acceptableUsagePolicy.ldap.failFast=true
cas.acceptableUsagePolicy.ldap.idleTime=500
cas.acceptableUsagePolicy.ldap.prunePeriod=600
cas.acceptableUsagePolicy.ldap.blockWaitTime=5000
cas.acceptableUsagePolicy.ldap.useSsl=true
cas.acceptableUsagePolicy.ldap.useStartTls=false

cas.acceptableUsagePolicy.ldap.validator.type=NONE|SEARCH|COMPARE
cas.acceptableUsagePolicy.ldap.validator.baseDn=
cas.acceptableUsagePolicy.ldap.validator.searchFilter=(objectClass=*)
cas.acceptableUsagePolicy.ldap.validator.scope=OBJECT|ONELEVEL|SUBTREE
cas.acceptableUsagePolicy.ldap.validator.attributeName=objectClass
cas.acceptableUsagePolicy.ldap.validator.attributeValues=top
cas.acceptableUsagePolicy.ldap.validator.dn=

REST API

To learn more about this topic, please review this guide.

cas.rest.attributeName=
cas.rest.attributeValue=
cas.rest.throttler=neverThrottle

Metrics & Performance Stats

To learn more about this topic, please review this guide.

cas.metrics.loggerName=perfStatsLogger
cas.metrics.refreshInterval=30

Groovy Shell

Control access and configuration of the embedded Groovy shell in CAS.
To learn more about this topic, please review this guide.

shell.commandRefreshInterval=15
shell.commandPathPatterns=classpath*:/commands/**
shell.auth.simple.user.name=
shell.auth.simple.user.password=
shell.ssh.enabled=true
shell.ssh.port=2000
shell.telnet.enabled=false
shell.telnet.port=5000
shell.ssh.authTimeout=3000
shell.ssh.idleTimeout=30000

SAML Metadata UI

Control how SAML MDUI elements should be displayed on the main CAS login page
in the event that CAS is handling authentication for an external SAML2 IdP.

To learn more about this topic, please review this guide.

cas.samlMetadataUi.requireValidMetadata=true
cas.samlMetadataUi.repeatInterval=120000
cas.samlMetadataUi.startDelay=30000
cas.samlMetadataUi.resources=classpath:/sp-metadata::classpath:/pub.key,http://md.incommon.org/InCommon/InCommon-metadata.xml::classpath:/inc-md-pub.key
cas.samlMetadataUi.maxValidity=0
cas.samlMetadataUi.requireSignedRoot=false
cas.samlMetadataUi.parameter=entityId

Eureka Service Discovery

To learn more about this topic, please review this guide.

eureka.client.serviceUrl.defaultZone=${EUREKA_SERVER_HOST:http://localhost:8761}/eureka/
eureka.client.enabled=true
eureka.instance.statusPageUrl=${cas.server.prefix}/status/info
eureka.instance.healthCheckUrl=${cas.server.prefix}/status/health
eureka.instance.homePageUrl=${cas.server.prefix}/
eureka.client.healthcheck.enabled=true

spring.cloud.config.discovery.enabled=false

Provisioning

SCIM

Provision the authenticated CAS principal via SCIM.
To learn more about this topic, please review this guide.

cas.scim.version=2
cas.scim.target=
cas.scim.oauthToken=
cas.scim.username=
cas.scim.password=

Password Management

Allow the user to update their account password, etc in-place.
To learn more about this topic, please review this guide.

cas.authn.pm.enabled=true

Minimum 8 and Maximum 10 characters at least 1 Uppercase Alphabet, 1 Lowercase Alphabet, 1 Number and 1 Special Character
cas.authn.pm.policyPattern=^(?=.*[a-z])(?=.*[A-Z])(?=.*\\d)(?=.*[$@$!%*?&])[A-Za-z\\d$@$!%*?&]{8,10}

cas.authn.pm.reset.text=Reset your password with this link: %s
cas.authn.pm.reset.subject=Password Reset Request
cas.authn.pm.reset.from=
cas.authn.pm.reset.expirationMinutes=1
cas.authn.pm.reset.emailAttribute=mail
cas.authn.pm.reset.securityQuestionsEnabled=true

Used to sign/encrypt the password-reset link
cas.authn.pm.reset.security.encryptionKey=
cas.authn.pm.reset.security.signingKey=

The signing and encryption keys are both JWKs of size 512 and 256.
The encryption algorithm is set to AES_128_CBC_HMAC_SHA_256.

LDAP Password Management

The following LDAP types are supported:

| Type | Description|————————-|————————————————–
| AD | Active Directory.
| FreeIPA | FreeIPA Directory Server.
| EDirectory | NetIQ eDirectory.
| GENERIC | All other directory servers (i.e OpenLDAP, etc).

cas.authn.pm.ldap.type=GENERIC|AD|FreeIPA|EDirectory

cas.authn.pm.ldap.ldapUrl=ldaps://ldap1.example.edu ldaps://ldap2.example.edu
cas.authn.pm.ldap.connectionStrategy=
cas.authn.pm.ldap.useSsl=true
cas.authn.pm.ldap.useStartTls=false
cas.authn.pm.ldap.connectTimeout=5000
cas.authn.pm.ldap.baseDn=dc=example,dc=org
cas.authn.pm.ldap.userFilter=cn={user}
cas.authn.pm.ldap.subtreeSearch=true
cas.authn.pm.ldap.bindDn=cn=Directory Manager,dc=example,dc=org
cas.authn.pm.ldap.bindCredential=Password
cas.authn.pm.ldap.trustCertificates=
cas.authn.pm.ldap.keystore=
cas.authn.pm.ldap.keystorePassword=
cas.authn.pm.ldap.keystoreType=JKS|JCEKS|PKCS12
cas.authn.pm.ldap.poolPassivator=NONE|CLOSE|BIND
cas.authn.pm.ldap.minPoolSize=3
cas.authn.pm.ldap.maxPoolSize=10
cas.authn.pm.ldap.validateOnCheckout=true
cas.authn.pm.ldap.validatePeriodically=true
cas.authn.pm.ldap.validatePeriod=600
cas.authn.pm.ldap.validateTimeout=5000
cas.authn.pm.ldap.failFast=true
cas.authn.pm.ldap.idleTime=500
cas.authn.pm.ldap.prunePeriod=600
cas.authn.pm.ldap.blockWaitTime=5000
cas.authn.pm.ldap.providerClass=org.ldaptive.provider.unboundid.UnboundIDProvider

Attributes that should be fetched to indicate security questions and answers,
assuming security questions are enabled.
cas.authn.pm.ldap.securityQuestionsAttributes.attrQuestion1=attrAnswer1
cas.authn.pm.ldap.securityQuestionsAttributes.attrQuestion2=attrAnswer2
cas.authn.pm.ldap.securityQuestionsAttributes.attrQuestion3=attrAnswer3

cas.authn.pm.ldap.validator.type=NONE|SEARCH|COMPARE
cas.authn.pm.ldap.validator.baseDn=
cas.authn.pm.ldap.validator.searchFilter=(objectClass=*)
cas.authn.pm.ldap.validator.scope=OBJECT|ONELEVEL|SUBTREE
cas.authn.pm.ldap.validator.attributeName=objectClass
cas.authn.pm.ldap.validator.attributeValues=top
cas.authn.pm.ldap.validator.dn=

JDBC Password Management

cas.authn.pm.jdbc.sqlSecurityQuestions=SELECT question, answer FROM table WHERE user=?
cas.authn.pm.jdbc.sqlFindEmail=SELECT email FROM table WHERE user=?
cas.authn.pm.jdbc.sqlChangePassword=UPDATE table SET password=? WHERE user=?

cas.authn.pm.jdbc.healthQuery=
cas.authn.pm.jdbc.isolateInternalQueries=false
cas.authn.pm.jdbc.url=jdbc:hsqldb:mem:cas-hsql-database
cas.authn.pm.jdbc.failFast=true
cas.authn.pm.jdbc.isolationLevelName=ISOLATION_READ_COMMITTED
cas.authn.pm.jdbc.dialect=org.hibernate.dialect.HSQLDialect
cas.authn.pm.jdbc.leakThreshold=10
cas.authn.pm.jdbc.propagationBehaviorName=PROPAGATION_REQUIRED
cas.authn.pm.jdbc.batchSize=1
cas.authn.pm.jdbc.user=sa
cas.authn.pm.jdbc.ddlAuto=create-drop
cas.authn.pm.jdbc.maxAgeDays=180
cas.authn.pm.jdbc.password=
cas.authn.pm.jdbc.autocommit=false
cas.authn.pm.jdbc.driverClass=org.hsqldb.jdbcDriver
cas.authn.pm.jdbc.idleTimeout=5000
cas.authn.pm.jdbc.dataSourceName=
cas.authn.pm.jdbc.dataSourceProxy=false

cas.authn.pm.jdbc.passwordEncoder.type=NONE|DEFAULT|STANDARD|BCRYPT|SCRYPT|PBKDF2|com.example.CustomPasswordEncoder
cas.authn.pm.jdbc.passwordEncoder.characterEncoding=
cas.authn.pm.jdbc.passwordEncoder.encodingAlgorithm=
cas.authn.pm.jdbc.passwordEncoder.secret=
cas.authn.pm.jdbc.passwordEncoder.strength=16

REST Password Management

cas.authn.pm.rest.endpointUrlEmail=
cas.authn.pm.rest.endpointUrlSecurityQuestions=
cas.authn.pm.rest.endpointUrlChange=

 CAS Monitoring

layout: default
title: CAS - Monitoring

CAS Monitoring

CAS monitors may be defined to report back the health status of the ticket registry
and other underlying connections to systems that are in use by CAS.

Default

The default monitors report back brief memory and ticket stats. There is nothing more for you to do.
To see the relevant list of CAS properties, please review this guide
and this guide.

Memcached

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-memcached-monitor</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Ehcache

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-ehcache-monitor</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Hazelcast

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-hazelcast-monitor</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

JDBC

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-jdbc-monitor</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

LDAP

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-ldap-monitor</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

 Redis Ticket Registry

layout: default
title: CAS - Redis Ticket Registry

Redis Ticket Registry

Redis integration is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-redis-ticket-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

This registry stores tickets in one or more Redis [http://redis.io/] instances. The
spring data redis [http://projects.spring.io/spring-data-redis/] library used by this component presents Redis as a
key/value store that accepts String keys and CAS ticket objects as values. The key is started with CAS_TICKET:.

Configuration

To see the relevant list of CAS properties, please review this guide.

Eviction Policy

Redis manages the internal eviction policy of cached objects via its time-alive settings.
The timeout is the ticket’s timeToLive value. So you need to ensure the cache is alive long enough to support the
individual expiration policy of tickets, and let CAS clean the tickets as part of its own cleaner if necessary.

 Sending Email

layout: default
title: CAS - Sending Email

Sending Email

CAS presents the ability to notify users on select actions via email messages. Example actions include notification of risky authentication attempts
or password reset links/tokens. SMS providers supported by CAS are listed below. Note that an active/professional subscription may be required for certain
providers.

To see the relevant list of CAS properties, please review this guide.

 JSON Service Registry

layout: default
title: CAS - JSON Service Registry

JSON Service Registry

This registry reads services definitions from JSON configuration files at the application context initialization time.
JSON files are
expected to be found inside a configured directory location and this registry will recursively look through
the directory structure to find relevant JSON files.

Support is enabled by adding the following module into the Maven overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-json-service-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

A sample JSON file follows:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "testId",
 "name" : "testJsonFile",
 "id" : 103935657744185,
 "evaluationOrder" : 10
}

To see the relevant list of CAS properties, please review this guide.

Clustering Services
You MUST consider that if your CAS server deployment is clustered, each CAS node in the cluster must have
access to the same set of JSON configuration files as the other, or you may have to devise a strategy to keep
changes synchronized from one node to the next.

The JSON service registry is also able to auto detect changes to the specified directory. It will monitor changes to recognize
file additions, removals and updates and will auto-refresh CAS so changes do happen instantly.

Escaping Characters
Please make sure all field values in the JSON blob are correctly escaped, specially for the service id. If the service is defined as a regular expression, certain regex constructs such as "." and "\d" need to be doubly escaped.

The naming convention for new JSON files is recommended to be the following:

JSON fileName = serviceName + "-" + serviceNumericId + ".json"

Based on the above formula, for example the above JSON snippet shall be named: testJsonFile-103935657744185.json. Remember that because files are created based on the serviceName, you will need to make sure characters considered invalid for file names [https://en.wikipedia.org/wiki/Filename#Reserved_characters_and_words] are not used as part of the name.

Duplicate Services
As you add more files to the directory, you need to be absolutely sure that no two service definitions
will have the same id. If this happens, loading one definition will stop loading the other. While service ids
can be chosen arbitrarily, make sure all service numeric identifiers are unique. CAS will also output warnings
if duplicate data is found.

JSON Syntax

CAS uses a version of the JSON syntax [http://hjson.org/] that provides a much more relaxed
syntax with the ability to specify comments.

A given JSON file for instance could be formatted as such in CAS:

{
 /*
 Generic service definition that applies to https/imaps urls
 that wish to register with CAS for authentication.
 */
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "^(https|imaps)://.*",
 "name" : "HTTPS and IMAPS",
 "id" : 10000001,
}

Note the trailing comma at the end. See the above link for more info on the alternative syntax.

Legacy Syntax

CAS automatically should remain backwards compatible with service definitions
that were created by a CAS 4.2.x instance. Warnings should show up in the logs
when such deprecated service definitions are found. Deployers are advised to review each definition
and consult the docs to apply the new syntax.

An example legacy JSON file is listed below for reference:

{
 "@class" : "org.jasig.cas.services.RegexRegisteredService",
 "serviceId" : "^https://www.jasig.org/cas",
 "name" : "Legacy",
 "id" : 100,
 "description" : "This service definition authorizes the legacy jasig/cas URL. It is solely here to demonstrate service backwards-compatibility",
 "proxyPolicy" : {
 "@class" : "org.jasig.cas.services.RefuseRegisteredServiceProxyPolicy"
 },
 "evaluationOrder" : 100,
 "usernameAttributeProvider" : {
 "@class" : "org.jasig.cas.services.DefaultRegisteredServiceUsernameProvider"
 },
 "logoutType" : "BACK_CHANNEL",
 "attributeReleasePolicy" : {
 "@class" : "org.jasig.cas.services.ReturnAllowedAttributeReleasePolicy",
 "principalAttributesRepository" : {
 "@class" : "org.jasig.cas.authentication.principal.cache.CachingPrincipalAttributesRepository",
 "duration" : {
 "@class" : "javax.cache.expiry.Duration",
 "timeUnit" : ["java.util.concurrent.TimeUnit", "HOURS"],
 "expiration" : 2
 },
 "mergingStrategy" : "NONE"
 },
 "authorizedToReleaseCredentialPassword" : false,
 "authorizedToReleaseProxyGrantingTicket" : false
 },
 "accessStrategy" : {
 "@class" : "org.jasig.cas.services.DefaultRegisteredServiceAccessStrategy",
 "enabled" : true,
 "ssoEnabled" : true
 }
}

 SMS Messaging

layout: default
title: CAS - SMS Messaging

SMS Messaging

CAS presents the ability to notify users on select actions via SMS messaging. Example actions include notification of risky authentication attempts
or password reset links/tokens. SMS providers supported by CAS are listed below. Note that an active/professional subscription may be required for certain
providers.

Twillio

To learn more, visit this site [https://www.twilio.com/].

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-sms-twillio</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

TextMagic

To learn more, visit this site [https://www.textmagic.com/].

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-sms-textmagic</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Clickatell

To learn more, visit this site [http://www.clickatell.com/].

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-sms-clickatell</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

 Service Management

layout: default
title: CAS - Service Management

Service Management

The CAS service management facility allows CAS server administrators to declare and configure which services
(CAS clients) may make use of CAS in which ways. The core component of the service management facility is the
service registry that stores one or more registered services containing metadata that drives a number of CAS behaviors:

	Authorized services - Control which services may participate in a CAS SSO session.

	Forced authentication - Provides administrative control for forced authentication.

	Attribute release - Provide user details to services for authorization and personalization.

	Proxy control - Further restrict authorized services by granting/denying proxy authentication capability.

	Theme control - Define alternate CAS themes to be used for particular services.

To see the relevant list of CAS properties, please review this guide.

Service Management Webapp

The service management webapp is a standalone web application that may be deployed along side CAS that provides a GUI
to manage service registry data. The management web application MUST share the same registry configuration as the CAS server itself so the entire system can load the same services data. To learn more about the management webapp, please see this guide.

Registered Services

Registered services present the following metadata:

| Field | Description
|———————————–|———————————————————————————
| id | Required unique identifier. In most cases this is managed automatically by the ServiceRegistryDao. This MUST be a valid numeric value.
| name | Required name (255 characters or less).
| description | Optional free-text description of the service. (255 characters or less)
| informationUrl | Optional free-text link to the service information guide.
| privacyUrl | Optional free-text link to the service privacy policy.
| logo | Optional path to an image file that is the logo for this service. The image will be displayed on the login page along with the service description and name.
| serviceId | Required regular expression [http://docs.oracle.com/javase/tutorial/essential/regex/] describing a logical service. A logical service defines one or more URLs where a service or services are located. The definition of the url pattern must be done carefully because it can open security breaches. For example, using Ant pattern, if you define the following service : http://example.*/myService to match http://example.com/myService and http://example.fr/myService, it’s a bad idea as it can be tricked by http://example.hostattacker.com/myService. The best way to proceed is to define the more precise url patterns.
| theme | Optional Spring theme [http://static.springsource.org/spring/docs/3.2.x/spring-framework-reference/html/mvc.html#mvc-themeresolver] that may be used to customize the CAS UI when the service requests a ticket. See this guide for more details.
| proxyPolicy | Determines whether the service is able to proxy authentication, not whether the service accepts proxy authentication.
| evaluationOrder | Required value that determines relative order of evaluation of registered services. This flag is particularly important in cases where two service URL expressions cover the same services; evaluation order determines which registration is evaluated first.
| requiredHandlers | Set of authentication handler names that must successfully authenticate credentials in order to access the service. If defined, only the selected required handlers are chosen to respond to authentication requests from this registered service.
| attributeReleasePolicy | The policy that describes the set of attributes allows to be released to the application, as well as any other filtering logic needed to weed some out. See this guide for more details on attribute release and filters.
| logoutType | Defines how this service should be treated once the logout protocol is initiated. Acceptable values are LogoutType.BACK_CHANNEL, LogoutType.FRONT_CHANNEL or LogoutType.NONE. See this guide for more details on logout.
| usernameAttributeProvider | The provider configuration which dictates what value as the “username” should be sent back to the application. See this guide for more details on attribute release and filters.
| accessStrategy | The strategy configuration that outlines and access rules for this service. It describes whether the service is allowed, authorized to participate in SSO, or can be granted access from the CAS perspective based on a particular attribute-defined role, aka RBAC. See this guide for more details on attribute release and filters.
| publicKey | The public key associated with this service that is used to authorize the request by encrypting certain elements and attributes in the CAS validation protocol response, such as the PGT or the credential. See this guide for more details on attribute release and filters.
| logoutUrl | URL endpoint for this service to receive logout requests. See this guide for more details
| properties | Extra metadata associated with this service in form of key/value pairs. This is used to inject custom fields into the service definition, to be used later by extension modules to define additional behavior on a per-service basis. See this guide for more info please.
| multifactorPolicy | The policy that describes the configuration required for this service authentication, typically for multifactor authentication.

Service TypesNote that while the above properties apply to all generic service definitions, there are additional service types in CAS that may be activated and required depending on the protocol used and the nature of the client application. Always check the dedicated guide for the capability you have in mind (i.e. OAuth, SAML, etc).

Service Access Strategy

See this guide for more info please.

Proxy Authentication Policy

See this guide for more info please.

Service Custom Properties

See this guide for more info please.

Persisting Services

The following options may be used to store services in CAS.

Memory

See this guide for more info please.

JSON

See this guide for more info please.

YAML

See this guide for more info please.

Mongo

See this guide for more info please.

LDAP

See this guide for more info please.

JPA

See this guide for more info please.

Couchbase

See this guide for more info please.

DynamoDb

See this guide for more info please.

 Infinispan Ticket Registry

layout: default
title: CAS - Infinispan Ticket Registry

Infinispan Ticket Registry

Infinispan integration is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-infinispan-ticket-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Infinispan [http://infinispan.org/] is a distributed in-memory key/value data store with optional schema.
It can be used both as an embedded Java library and as a language-independent service accessed remotely over a variety of protocols.
It offers advanced functionality such as transactions, events, querying and distributed processing.

Cache instance can be integrated with

	JCache (JSR-107)

	Hibernate second-level Cache

	WildFly modules

	Apache Lucene directory backed by Infinispan

	Directory Provider for Hibernate Search

	Spring Cache 3.x and 4.x

	CDI

	OSGi

	Apache Spark [https://github.com/infinispan/infinispan-spark]

	Apache Hadoop [https://github.com/infinispan/infinispan-hadoop]

There are a variety of cache stores available to choose from, some of which are:

	JPA/JDBC Store

	Single File & Soft-Index

	REST

	Cassandra

	Redis

	HBase

	MongoDB

See the full list of implementations [http://infinispan.org/cache-store-implementations/].

Distributed Cache

A sample infinispan.xml configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<infinispan xsi:schemaLocation="urn:infinispan:config:8.2 http://www.infinispan.org/schemas/infinispan-config-8.2.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="urn:infinispan:config:8.2">

 <cache-container default-cache="cas">
 <jmx duplicate-domains="true" />
 <local-cache name="cas" />
 </cache-container>
</infinispan>

Refer to the Infinispan [http://infinispan.org/] documentation to learn more about cache configuration, and how
to manage the eviction policy for various ticket types.

 Adaptive Authentication

layout: default
title: CAS - Adaptive Authentication

Adaptive Authentication

Adaptive authentication in CAS allows you to accept or reject authentication requests based on certain characteristics
of the client browser and/or device. When configured, you are provided with options to block authentication requests
from certain locations submitted by certain browser agents. For instance, you may consider authentication requests submitted
from London, UK to be considered suspicious, or you may want to block requests that are submitted from Internet Explorer, etc.

Configuration

To see the relevant list of CAS properties, please review this guide.

To enable adaptive authentication, you will need to allow CAS to geo-locate authentication requests.
To learn more, please see this guide

Risk-based Authentication

CAS is able to track and examine authentication requests for suspicious behavior.
To learn more, please see this guide.

 JDBC Drivers

layout: default
title: CAS - JDBC Drivers

JDBC Drivers

While in most cases this is unnecessary and handled by CAS automatically,
you may need to also include the following module to account for various database drivers:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-jdbc-drivers</artifactId>
 <version>${cas.version}</version>
</dependency>

Database Support

Automatic support for drivers includes the following databases.
All other drivers need to be manually added to the build configuration.
To see the relevant list of CAS properties, please review this guide.

HSQLDB

Available drivers are:

	org.hsqldb.jdbcDriver

| Dialects|————————————-
| org.hibernate.dialect.HSQLDialect

Oracle

Note that the Oracle database driver needs to
be manually installed [http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html]
before the above configuration can take effect. Depending on the driver version, the actual name
of the driver class may vary.

| Dialects|————————————-
| org.hibernate.dialect.Oracle8iDialect| org.hibernate.dialect.Oracle9iDialect| org.hibernate.dialect.Oracle10gDialect| org.hibernate.dialect.Oracle12cDialect

MYSQL

Available drivers are:

	com.mysql.jdbc.Driver

	com.mysql.cj.jdbc.Driver

| Dialects|————————————————-
| org.hibernate.dialect.MySQLDialect| org.hibernate.dialect.MySQL5Dialect| org.hibernate.dialect.MySQLInnoDBDialect| org.hibernate.dialect.MySQLMyISAMDialect| org.hibernate.dialect.MySQL5InnoDBDialect| org.hibernate.dialect.MySQL57InnoDBDialect

PostgreSQL

Available drivers are:

	org.postgresql.Driver

| Dialects|————————————————
| org.hibernate.dialect.PostgreSQL81Dialect| org.hibernate.dialect.PostgreSQL82Dialect| org.hibernate.dialect.PostgreSQL9Dialect| org.hibernate.dialect.PostgreSQL91Dialect| org.hibernate.dialect.PostgreSQL92Dialect| org.hibernate.dialect.PostgreSQL93Dialect| org.hibernate.dialect.PostgreSQL94Dialect| org.hibernate.dialect.PostgreSQL95Dialect

MariaDB

Available drivers are:

	org.mariadb.jdbc.Driver

| Dialects|————————————————
| org.hibernate.dialect.MariaDBDialect| org.hibernate.dialect.MariaDBDialect

Microsoft SQL Server (JTDS)

Available drivers are:

	net.sourceforge.jtds.jdbc.Driver

| Dialects|————————————————
| org.hibernate.dialect.SQLServerDialect| org.hibernate.dialect.SQLServer2005Dialect| org.hibernate.dialect.SQLServer2008Dialect| org.hibernate.dialect.SQLServer2012Dialect

 SPNEGO Authentication

layout: default
title: CAS - SPNEGO Authentication

SPNEGO Authentication

SPNEGO [http://en.wikipedia.org/wiki/SPNEGO] is an authentication technology that is primarily used to provide
transparent CAS authentication to browsers running on Windows running under Active Directory domain credentials.
There are three actors involved: the client, the CAS server, and the Active Directory Domain Controller/KDC.

	Client sends CAS: HTTP GET to CAS for cas protected page

	CAS responds: HTTP 401 - Access Denied WWW-Authenticate: Negotiate

	Client sends ticket request: Kerberos(KRB_TGS_REQ) Requesting ticket for HTTP/cas.example.com@REALM

	Kerberos KDC responds: Kerberos(KRB_TGS_REP) Granting ticket for HTTP/cas.example.com@REALM

	Client sends CAS: HTTP GET Authorization: Negotiate w/SPNEGO Token

	CAS responds: HTTP 200 - OK WWW-Authenticate w/SPNEGO response + requested page.

The above interaction occurs only for the first request, when there is no CAS SSO session.
Once CAS grants a ticket-granting ticket, the SPNEGO process will not happen again until the CAS
ticket expires.

Requirements

	Client is logged in to a Windows Active Directory domain.

	Supported browser.

	CAS is running MIT kerberos against the AD domain controller.

Components

SPNEGO support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-spnego-webflow</artifactId>
 <version>${cas.version}</version>
</dependency>

You may also need to declare the following Maven repository in
your CAS overlay to be able to resolve dependencies:

<repositories>
 ...
 <repository>
 <id>jasig-releases</id>
 <url>http://developer.jasig.org/repo/content/groups/m2-legacy</url>
 </repository>
 ...
</repositories>

Configuration

The following steps are required to turn on the SPNEGO functionality.

Create SPN Account

Create an Active Directory account for the Service Principal Name (SPN) and record the username. Password will be overwritten by the next step.

Create Keytab File

The keytab file enables a trust link between the CAS server and the Key Distribution Center (KDC); an Active Directory
domain controller serves the role of KDC in this context.
The ktpass tool [http://technet.microsoft.com/en-us/library/cc753771.aspx] is used to generate the keytab file,
which contains a cryptographic key. Be sure to execute the command from an Active Directory domain controller as
administrator (a member of domain administrators will not be able to use ktpass successfully).

Example:

C:\Users\administrator.DOMAIN>ktpass /out myspnaccount.keytab /princ HTTP/cas.example.com@REALM /pass * /mapuser domain-account@YOUR.REALM /ptype KRB5_NT_PRINCIPAL /crypto RC4-HMAC-NT
Targeting domain controller: DC.YOUR.REALM
Successfully mapped HTTP/cas.example.com to domaine-account.
Type the password for HTTP/cas.example.com:
Type the password again to confirm:
Password succesfully set!
Key created.
Output keytab to myspnaccount.keytab:
Keytab version: 0x502
keysize 69 HTTP/cas.example.com@REALM ptype 1 (KRB5_NT_PRINCIPAL) vno 3 etype 0x17 (RC4-HMAC) keylength 16 (0x00112233445566778899aabbccddeeff)

Test SPN Account

Install and configure MIT Kerberos V on the CAS server host(s). The following sample krb5.conf file may be used
as a reference.

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 ticket_lifetime = 24000
 default_realm = YOUR.REALM.HERE
 default_keytab_name = /home/cas/kerberos/myspnaccount.keytab
 dns_lookup_realm = false
 dns_lookup_kdc = false
 default_tkt_enctypes = rc4-hmac
 default_tgs_enctypes = rc4-hmac

[realms]
 YOUR.REALM.HERE = {
 kdc = your.kdc.your.realm.here:88
 }

[domain_realm]
 .your.realm.here = YOUR.REALM.HERE
 your.realm.here = YOUR.REALM.HERE

It is important to note that myspnaccount.keytab is declared as default keytab, otherwise CAS may not be able to
find it and will raise an exception similar to

KrbException: Invalid argument (400) - Cannot find key of appropriate type to decrypt AP REP -RC4 with HMAC`

Then verify that your are able to read the keytab file:

klist -k
Keytab name: FILE:/home/cas/kerberos/myspnaccount.keytab
KVNO Principal
---- --
 3 HTTP/cas.example.com@REALM

Then verify that your are able to use the keytab file:

kinit -k HTTP/cas.example.com@REALM
klist
Ticket cache: FILE:/tmp/krb5cc_999
Default principal: HTTP/cas.example.com@REALM

Valid starting Expires Service principal
12/08/2016 10:52:00 12/08/2016 20:52:00 krbtgt/REALM@REALM
 renew until 12/08/2016 20:52:00

Browser Configuration

	Internet Explorer - Enable Integrated Windows Authentication and add the CAS server URL to the Local Intranet
zone.

	Firefox - Set the network.negotiate-auth.trusted-uris configuration parameter in about:config to the CAS server
URL, e.g. https://cas.example.com.

Authentication Configuration

Make sure you have at least specified the JCIFS Service Principal in the CAS configuration.
To see the relevant list of CAS properties, please review this guide.
To see the relevant list of CAS properties that deal with NTLM authentication,
please review this guide.

You may provide a JAAS login.conf file:

jcifs.spnego.initiate {
 com.sun.security.auth.module.Krb5LoginModule required storeKey=true useKeyTab=true keyTab="/home/cas/kerberos/myspnaccount.keytab";
};
jcifs.spnego.accept {
 com.sun.security.auth.module.Krb5LoginModule required storeKey=true useKeyTab=true keyTab="/home/cas/kerberos/myspnaccount.keytab";
};

Client Selection Strategy

CAS provides a set of components that attempt to activate the SPNEGO flow conditionally,
in case deployers need a configurable way to decide whether SPNEGO should be applied to the
current authentication/browser request. The state that is available to the webflow
is evaluateClientRequest which will attempt to start SPNEGO authentication
or resume normally, depending on the client action strategy chosen below.

By Remote IP

Checks to see if the request’s remote ip address matches a predefine pattern.
To see the relevant list of CAS properties, please review this guide.

By Hostname

Checks to see if the request’s remote hostname matches a predefine pattern.
To see the relevant list of CAS properties, please review this guide.

By LDAP Attribute

Checks an LDAP instance for the remote hostname, to locate a pre-defined attribute whose mere existence
would allow the webflow to resume to SPNEGO.

To see the relevant list of CAS properties, please review this guide.

 Whitelist Authentication

layout: default
title: CAS - Whitelist Authentication

Whitelist Authentication

Whitelist authentication components fall into two categories:
Those that accept a set of credentials stored directly in the configuration and those
that accept a set of credentials from a file resource on the server.

Configuration

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-generic</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Example Password File

scott::password
bob::password2

 Microsoft Azure Authentication

layout: default
title: CAS - Microsoft Azure Authentication

Microsoft Azure Authentication

Azure Multi-Factor Authentication (MFA) is Microsoft’s two-step verification solution. Azure MFA helps safeguard access to data and applications while meeting user demand for a simple sign-in process. It delivers strong authentication via a range of verification methods, including phone call, text message, etc.

To learn more about Microsoft Azure and its multifactor authentication features, refer to Microsoft’s documentation [https://docs.microsoft.com/en-us/azure/multi-factor-authentication/multi-factor-authentication].

Support is enabled by including the following module in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-azure</artifactId>
 <version>${cas.version}</version>
</dependency>

The functionality of this feature depends on the availability of a phone number that is resolved as a pre-defined
attribute for the CAS principal. Also note that only a limited number of authentication modes are available to assist with verification
of credentials via Microsoft Azure. Such modes are activated via the CAS settings.

Secure CertificatesYour Microsoft Azure subscription will provide you with a license and a client certificate. The client certificate is a unique private certificate that was generated especially for you. Do not share or lose this file. It’s your key to ensuring the security of your communications with the Azure multifactor authentication service.

Configuration

To see the relevant list of CAS properties, please review this guide.

 MongoDb Ticket Registry

layout: default
title: CAS - MongoDb Ticket Registry

MongoDb Ticket Registry

MongoDb ticket registry integration is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-mongo-ticket-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

This registry stores tickets in one or more MongoDb [https://www.mongodb.com/] instances.
Tickets are auto-converted and wrapped into document objects as JSON. Special indices are
created to let MongoDb handle the expiration of each document and cleanup tasks.

Configuration

To see the relevant list of CAS properties, please review this guide.

Troubleshooting

To enable additional logging, configure the log4j configuration file to add the following
levels:

...
<AsyncLogger name="com.mongo" level="debug" additivity="false">
 <AppenderRef ref="console"/>
 <AppenderRef ref="file"/>
</AsyncLogger>
...

 Services Management Webapp

layout: default
title: CAS - Services Management Webapp

Services Management Webapp

The services management webapp is no longer part of the CAS server and
is a standalone web application.

	The management webapp is used to add/edit/delete all the CAS services

	The CAS server loads/relies on all these defined CAS services to process all incoming requests.

Synchronized Configuration
You MUST keep in mind that both applications (the CAS server and the services management webapp)
share the same service registry configuration for CAS services.

A sample overlay for the services management webapp is provided
here: https://github.com/apereo/cas-services-management-overlay

To see the relevant list of CAS properties, please review this guide.

Services Registry

The persistence storage for services MUST be the same as that of the CAS server.

Authentication Method

Access to the management webapp is by default configured to authenticate against a CAS server.
To see the relevant list of CAS properties, please review this guide.

Authorization

Learn how to control access to the management web application.

Static List of Users

By default, access is limited to a static list of users whose credentials may be
specified in a user-details.properties file that should be available on the runtime classpath.

Attribute

Alternatively, the authorization generator examines the CAS validation response and principal for attributes
and will grant access if an attribute name matches the value of adminRoles defined in the configuration.

LDAP

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-management-webapp-support-ldap</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

 Password Management

layout: default
title: CAS - Password Management

Password Management

If authentication fails due to a rejected password policy, CAS is able to intercept
that request and allow the user to update the account password in place. The password management features of CAS are rather modest, and alternatively should the functionality provide inadequate for your policy, you may always redirect CAS to use a separate and standalone application that is fully in charge of managing the account password and associated flows.

CAS may also allow users to reset their passwords voluntarily. Those who have forgotten their account password
may receive a secure link with a time-based expiration policy at their registered email address and/or phone. The link
will allow the user to provide answers to his/her pre-defined security questions, which if successfully done,
will allow the user to next reset their password and login again. To learn more about available notification options, please see this guide
or this guide.

You may also specify a pattern for accepted passwords.
To see the relevant list of CAS properties, please review this guide.

LDAP

The updated password may be stored inside an LDAP server.
To see the relevant list of CAS properties, please review this guide.

JDBC

The updated password may be stored inside a database.
To see the relevant list of CAS properties, please review this guide.

REST

Tasks such as locating user’s email and security questions as well as management
and updating of the password are delegated to user-defined rest endpoints.

To see the relevant list of CAS properties, please review this guide.

| Endpoint | Method | Headers | Expected Response
|—————————|———–|————————————————————————
| Get Email Address | GET | username | 200. Email address in the body.
| Get Security Questions | GET | username | 200. Security questions map in the body.
| Update Password | POST | username, password, oldPassword | 200. true/false in the body.

 Basic Authentication

layout: default
title: CAS - Basic Authentication

Basic Authentication

Verify and authenticate credentials using Basic Authentication.

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-basic</artifactId>
 <version>${cas.version}</version>
</dependency>

To access a CAS-protected application using a command-line client such as curl, the following command may be used:

curl <APPLICATION-URL> -L -u <USER>:<PASSWORD>

Use --insecure -v flags to bypass certificate validation and receive additional logs from curl.

If your APPLICATION-URL and CAS server url are not on the same host, curl will NOT send the Basic Authentication header to the CAS
server when redirected. This behavior in curl can be overridden by passing the --location-trusted flag to curl.

From CURL man page:

--location-trusted
 (HTTP/HTTPS) Like -L, --location, but will allow sending the name + password to all hosts that the site may redirect to. This may or may
 not introduce a security breach if the site redirects you to a site to which you'll send your authentication info
 (which is plaintext in the case of HTTP Basic authentication).

 LDAP Service Registry

layout: default
title: CAS - LDAP Service Registry

LDAP Service Registry

Service registry implementation which stores the services in a LDAP Directory.
Uses an instance of LdapRegisteredServiceMapper, that by default is DefaultLdapRegisteredServiceMapper
in order to configure settings for retrieval, search and persistence of service definitions.
By default, entries are assigned the objectclass casRegisteredService
attribute and are looked up by the uid attribute.

Support is enabled by adding the following module into the Maven overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-ldap-service-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

Configuration

The default mapper has support for the following optional items:

| Field | Default Value
|———————————–|—————————————————
| objectClass | casRegisteredService
| serviceDefinitionAttribute | description
| idAttribute | uid

Service definitions are by default stored inside the serviceDefinitionAttribute attribute as
JSON objects. The format and syntax of the JSON is identical to that of
JSON Service Registry.

To see the relevant list of CAS properties, please review this guide.

Auto Initialization

Upon startup and configuration permitting,
the registry is able to auto initialize itself from default
JSON service definitions available to CAS.

To see the relevant list of CAS properties, please review this guide.

 CAS Metrics

layout: default
title: CAS - Metrics

CAS Metrics

Supported metrics include:

	Run count and elapsed times for all supported garbage collectors

	Memory usage for all memory pools, including off-heap memory

	Breakdown of thread states, including deadlocks

	File descriptor usage

	...

Metric Refresh Interval

The metrics reporting interval can be configured via CAS properties.
To see the relevant list of CAS properties, please review this guide.

Loggers

All performance data and metrics are routed to a log file via the Log4j configuration:

...
<RollingFile name="perfFileAppender" fileName="perfStats.log" append="true"
 filePattern="perfStats-%d{yyyy-MM-dd-HH}-%i.log">
 <PatternLayout pattern="%m%n"/>
 <Policies>
 <OnStartupTriggeringPolicy />
 <SizeBasedTriggeringPolicy size="10 MB"/>
 <TimeBasedTriggeringPolicy />
 </Policies>
</RollingFile>

...

<CasAppender name="casPerf">
 <AppenderRef ref="perfFileAppender" />
</CasAppender>

Sample Output

type=GAUGE, name=jvm.gc.Copy.count, value=22
type=GAUGE, name=jvm.gc.Copy.time, value=466
type=GAUGE, name=jvm.gc.MarkSweepCompact.count, value=3
type=GAUGE, name=jvm.gc.MarkSweepCompact.time, value=414
type=GAUGE, name=jvm.memory.heap.committed, value=259653632
type=GAUGE, name=jvm.memory.heap.init, value=268435456
type=GAUGE, name=jvm.memory.heap.max, value=1062338560
type=GAUGE, name=jvm.memory.heap.usage, value=0.09121857348376773
type=GAUGE, name=jvm.memory.heap.used, value=96905008

type=METER, name=org.apereo.cas.DefaultCentralAuthenticationService.CREATE_TICKET_GRANTING_TICKET_METER, count=0,
mean_rate=0.0, m1=0.0, m5=0.0, m15=0.0, rate_unit=events/millisecond

type=METER, name=org.apereo.cas.DefaultCentralAuthenticationService.DESTROY_TICKET_GRANTING_TICKET_METER,
count=0, mean_rate=0.0, m1=0.0, m5=0.0, m15=0.0, rate_unit=events/millisecond

type=TIMER, name=org.apereo.cas.DefaultCentralAuthenticationService.GRANT_SERVICE_TICKET_TIMER, count=0,
min=0.0, max=0.0, mean=0.0, stddev=0.0, median=0.0, p75=0.0, p95=0.0, p98=0.0, p99=0.0, p999=0.0,
mean_rate=0.0, m1=0.0, m5=0.0, m15=0.0, rate_unit=events/millisecond, duration_unit=milliseconds

 Webflow Session

layout: default
title: CAS - Web Flow Customization

Webflow Session

CAS uses Spring Webflow [https://github.com/spring-projects/spring-webflow] to manage the
authentication sequence. Spring Webflow provides a pluggable architecture whereby various actions,
decisions and operations throughout the primary authentication workflow can be easily controlled
and navigated. In order for this navigation to work, some form of conversational session state must be maintained.

Client-side Sessions

CAS provides a facility for storing flow execution state on the client in Spring Webflow. Flow state is stored as an encoded byte
stream in the flow execution identifier provided to the client when rendering a view. CAS automatically attempts to store
and keep track of this state on the client in an encrypted form via encryption and signing keys
to remove the need for session cleanup, termination and replication.

To see the relevant list of CAS properties, please review this guide.

In the event that keys are not generated by the deployer, CAS will attempt to auto-generate keys and will output
the result for each respected key. The deployer MUST attempt to copy the generated keys to their CAS properties file, specially when
running a multi-node CAS deployment. Failure to do so will prevent CAS
to appropriate decrypt and encrypt the webflow state and will prevent successful single sign-on.

Usage Warning!
While the above settings are all optional, it is recommended that you provide your own configuration and settings for encrypting and
transcoding of the web session state.

Server-side Sessions

In the event that you wish to use server-side session storage for managing the webflow session, you will need to enable this behavior
via CAS properties. To see the relevant list of CAS properties, please review this guide.

Doing so will likely require you to also enable sticky sessions and/or session replication in a clustered deployment of CAS.

Hazelcast Session Replication

If you don’t wish to use the native container’s strategy for session replication,
you can use CAS’s support for Hazelcast session replication.

This feature is enabled via the following module:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-webapp-session-hazelcast</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Redis Session Replication

If you don’t wish to use the native container’s strategy for session replication,
you can use CAS’s support for Redis session replication.

This feature is enabled via the following module:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-webapp-session-redis</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

MongoDb Session Replication

If you don’t wish to use the native container’s strategy for session replication,
you can use CAS’s support for Mongo session replication.

This feature is enabled via the following module:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-webapp-session-mongo</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

 Authy Authentication

layout: default
title: CAS - Authy Authentication

Authy Authentication

CAS provides support for Authy’s TOTP API [http://docs.authy.com/totp.html]. This is done
via Authy’s simple REST API that does all the heavy lifting.

Start by visiting the Authy documentation [https://www.authy.com/developers/].

Support is enabled by including the following module in the Overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-authy</artifactId>
 <version>${cas.version}</version>
</dependency>

Configuration

To see the relevant list of CAS properties, please review this guide.

Registration

By default, users are registered with authy based on their phone and email attributes retrieved by CAS.

 Audits

layout: default
title: CAS - Audit Configuration

Audits

CAS uses the Inspektr framework [https://github.com/apereo/inspektr] for auditing purposes
and statistics. The Inspektr project allows for non-intrusive auditing and logging of the
coarse-grained execution paths e.g. Spring-managed beans method executions by using annotations
and Spring-managed @Aspect-style aspects.

CAS server auto-configures all the relevant Inspektr components.
All the available configuration
options that are injected to Inspektr classes are available to
deployers via relevant CAS properties.

To see the relevant list of CAS properties, please review this guide.

Sentry-based Audits

Audit log data can be automatically routed to and integrated with Sentry to track and monitor CAS events and errors.

File-based Audits

File-based audit logs appear in a cas_audit.log file defined in the Logging configuration.
To see the relevant list of CAS properties, please review this guide.

Sample Log Output

WHO: org.apereo.cas.support.oauth.authentication.principal.OAuthCredentials@6cd7c975
WHAT: supplied credentials: org.apereo.cas.support.oauth.authentication.principal.OAuthCredentials@6cd7c975
ACTION: AUTHENTICATION_SUCCESS
APPLICATION: CAS
WHEN: Mon Aug 26 12:35:59 IST 2013
CLIENT IP ADDRESS: 172.16.5.181
SERVER IP ADDRESS: 192.168.200.22

WHO: org.apereo.cas.support.oauth.authentication.principal.OAuthCredentials@6cd7c975
WHAT: TGT-9-qj2jZKQUmu1gQvXNf7tXQOJPOtROvOuvYAxybhZiVrdZ6pCUwW-cas01.example.org
ACTION: TICKET_GRANTING_TICKET_CREATED
APPLICATION: CAS
WHEN: Mon Aug 26 12:35:59 IST 2013
CLIENT IP ADDRESS: 172.16.5.181
SERVER IP ADDRESS: 192.168.200.22

Database Audits

If you intend to use a database for auditing functionality, enable the following module in your configuration:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-audit-jdbc</artifactId>
 <version>${cas.version}</version>
</dependency>

To learn how to configure database drivers, please review this guide.
To see the relevant list of CAS properties, please review this guide.

Audit Events

The following events are tracked and recorded in the audit log:

| Event | Action|—————————————|————————————–
| TICKET_GRANTING_TICKET | CREATED, NOT_CREATED, DESTROYED
| PROXY_GRANTING_TICKET | CREATED, NOT_CREATED, DESTROYED
| SERVICE_TICKET | CREATED, NOT_CREATED
| PROXY_TICKET | CREATED, NOT_CREATED
| AUTHENTICATION | SUCCESS, FAILED
| AUTHENTICATION_EVENT | TRIGGERED
| EVALUATE_RISKY_AUTHENTICATION | N/A
| MITIGATE_RISKY_AUTHENTICATION | N/A
| SAVE_SERVICE | SUCCESS, FAILURE
| CHANGE_PASSWORD | SUCCESS, FAILURE
| DELETE_SERVICE | SUCCESS, FAILURE

 OAuth/OpenID Authentication

layout: default
title: CAS - OAuth Authentication

OAuth/OpenID Authentication

CAS as OAuth ServerThis page specifically describes how to enable
OAuth/OpenID server support for CAS. If you would like to have CAS act as an OAuth/OpenID client communicating with
other providers (such as Google, Facebook, etc), see this page.

Configuration

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-oauth-webflow</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

After enabling OAuth support, the following endpoints will be available:

Endpoints

| Endpoint | Description | Method
|———————————|——————————————————————————————————————–
| /cas/oauth2.0/authorize | Authorize the user and start the CAS authentication flow. | GET
| /cas/oauth2.0/accessToken | Get an access token in plain-text or JSON | POST
| /cas/oauth2.0/profile | Get the authenticated user profile in JSON via access_token parameter. | GET

Response Types

The following types are supported; they allow you to get an access token representing the current user and OAuth client application. With the access token, you’ll be able to query the /profile endpoint and get the user profile.

Authorization Code

The authorization code type is made for UI interactions: the user will enter his own credentials.

	/cas/oauth2.0/authorize?response_type=code&client_id=ID&redirect_uri=CALLBACK returns the code as a parameter of the CALLBACK url

	/cas/oauth2.0/accessToken?grant_type=authorization_code&client_id=ID&client_secret=SECRET&code=CODE&redirect_uri=CALLBACK returns the access token

Token

The token type is also made for UI interactions as well as indirect non-interactive (i.e. Javascript) applications.

	/cas/oauth2.0/authorize?response_type=token&client_id=ID&redirect_uri=CALLBACK returns the access token as an anchor parameter of the CALLBACK url.

Resource Owner

The password grant type allows the OAuth client to directly send the user’s credentials to the OAuth server.

	/cas/oauth2.0/accessToken?grant_type=password&client_id=ID&username=USERNAME&password=PASSWORD returns the access token.

You must also need to pass along a service or X-service header value that identifies the target application url. The header value
must match the OAuth service definition in the registry that is linked to the client id.

Refresh Token

The refresh token grant type retrieves a new access token from a refresh token (emitted for a previous access token),
when this previous access token is expired.

	/cas/oauth2.0/accessToken?grant_type=refresh_token&client_id=ID&client_secret=SECRET&refresh_token=REFRESH_TOKEN returns the access token.

Register Clients

Every OAuth client must be defined as a CAS service (notice the new clientId and clientSecret properties, specific to OAuth):

{
 "@class" : "org.apereo.cas.support.oauth.services.OAuthRegisteredService",
 "clientId": "clientid",
 "clientSecret": "clientSecret",
 "bypassApprovalPrompt": false,
 "generateRefreshToken": false,
 "serviceId" : "^(https|imaps)://hello.*",
 "name" : "My OAuth service ",
 "id" : 100
}

Service definitions are typically managed by the service management facility.

Attribute Release

Attribute/claim filtering and release policies are defined per OAuth service.
See this guide for more info.

OAuth Expiration Policy

The expiration policy for OAuth tokens is controlled by CAS settings and properties. Note that while access and refresh tokens may have their own lifetime and expiration policy, they are typically upper-bound to the length of the CAS single sign-on session.

To see the relevant list of CAS properties, please review this guide.

Server Configuration

Remember that OAuth features of CAS require session affinity (and optionally session replication),
as the authorization responses throughout the login flow
are stored via server-backed session storage mechanisms. You will need to configure your deployment environment and load balancers accordinngly.

OpenID Authentication

To configure CAS to act as an OpenID provider, please see this page.

 Overview

layout: default
title: CAS - pac4j Authentication

Overview

The pac4j [https://github.com/pac4j/pac4j] project is a security engine with specific authentication mechanisms,
called authenticators, for MongoDB, LDAP, JWT, RDBMS...

A pac4j authenticator (and profile creator) can be wrapped
in a CAS authentication handler and used for authentication.

Dependency

Support is added by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-pac4j-authentication</artifactId>
 <version>${cas.version}</version>
</dependency>

Configuration

You can use the implementation for CAS username/password credentials:
UsernamePasswordWrapperAuthenticationHandler.

 Blacklist Authentication

layout: default
title: CAS - Blacklist Authentication

Blacklist Authentication

Blacklist authentication components are those that specifically deny access to a set of credentials.
Those that fail to match against the predefined set will blindly be accepted.

Configuration

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-generic</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

 JWT Service Tickets

layout: default
title: CAS - JWT Service Tickets

JWT Service Tickets

JSON Web Tokens [http://jwt.io/] are an open, industry standard RFC 7519 method for representing claims securely between two parties. CAS may also be allowed to fully create signed/encrypted JWTs and pass them back to the application in form of service tickets.

JWTs are entirely self-contained and contain the authenticated principal as well as all authorized attributes in form of JWT claims.

JCE RequirementMake sure you have the proper JCE bundle installed in your Java environment that is used by CAS, specially if you need to use specific signing/encryption algorithms and methods. Be sure to pick the right version of the JCE for your Java version. Java versions can be detected via the java -version command.

Overview

JWT-based service tickets are issued to application based on the same semantics defined by the CAS Protocol.

CAS having received an authentication request via its /login endpoint, will conditionally issue back service tickets to the application in form of a ticket parameter via the requested http method.

All JWTs are by default signed and encrypted by CAS based on keys generated and controlled during deployment. Such keys may be exchanged with client applications to unpack the JWT and access claims.

Web flow Diagram

[image: CAS Web flow JWT diagram]

Note that per the above diagram, the JWT request by default internally causes CAS to generate an ST for the application and immediately then validate it in order to get access to the auhenticated principal and attributes per policies associated with the application registration record in the CAS service registry. This response is transformed into a JWT that is then passed onto the client application.

In other words, the responsibility of receiving a service ticket (ST) and validating it is all moved into and handled internally by CAS. The application only needs to learn how to decipher and unpack the final JWT.

Configuration

JWT support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-token</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Register Clients

Signal the relevant application in CAS service registry to produce JWTs for service tickets:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "^https://.*",
 "name" : "Sample",
 "id" : 10,
 "properties" : {
 "@class" : "java.util.HashMap",
 "jwtAsResponse" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceProperty",
 "values" : ["java.util.HashSet", ["true"]]
 }
 }
}

 Servlet Container Configuration

layout: default
title: CAS - Overlay Installation

Servlet Container Configuration

A number of container options are available to deploy CAS. The WAR Overlay guide
describes how to build and deploy CAS.

Embedded

Note that CAS itself ships with a number of embedded containers that allows the platform to be self-contained as much as possible. You DO
NOT need to, but can if you want to, configure and deploy to an externally configured container.

Do Less
Remember that most if not all aspects of the embedded container can be controlled via the CAS properties.
See this guide for more info.

To see the relevant list of CAS properties,
please review this guide.

Apache Tomcat

Note that by default, the embedded container attempts to enable the HTTP2 protocol.

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-webapp-tomcat</artifactId>
 <version>${cas.version}</version>
</dependency>

Logging

The embedded Apache Tomcat container is presently unable to display any log messages below INFO even if your CAS log configuration explicitly asks for DEBUG or TRACE level data. See this bug report [https://github.com/spring-projects/spring-boot/issues/2923] to learn more.

While workarounds and fixes may become available in the future, for the time being, you may execute the following changes to get DEBUG level log data from the embedded Apache Tomcat. This is specially useful if you are troubleshooting the behavior of Tomcat’s internal components such as valves, etc.

	Design a logging.properties file as such:

handlers = java.util.logging.ConsoleHandler
.level = ALL
java.util.logging.ConsoleHandler.level = DEBUG
java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter

	Design ajava.util.logging.config.file setting as a system/environment variable or command-line argument whose value is set to the logging.properties path. Use the setting when you launch and deploy CAS.

For instance:

java -jar /path/to/cas.war -Djava.util.logging.config.file=/path/to/logging.properties

Jetty

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-webapp-jetty</artifactId>
 <version>${cas.version}</version>
</dependency>

Undertow

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-webapp-undertow</artifactId>
 <version>${cas.version}</version>
</dependency>

External

A CAS deployment may be deployed to any number of external servlet containers. The container MUST support
the servlet specification v3.1.x at a minimum. In these scenarios, the following vanilla CAS web application
may be used, in the WAR Overlay :

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-webapp</artifactId>
 <version>${cas.version}</version>
</dependency>

While there is no official project support, the following containers should be compatible with a CAS deployment:

	Apache Tomcat [http://tomcat.apache.org/]

	JBoss [http://www.jboss.org/]

	Wildfly [http://wildfly.org/]

	Undertow [http://undertow.io/]

	Jetty [http://www.eclipse.org/jetty/]

	GlassFish [http://glassfish.java.net/]

	WebSphere [http://www.ibm.com/software/websphere/]

Refer to the servlet container’s own documentation for more info.

Apache Tomcat

Deploying into an external Apache Tomcat instance may require the below special considerations.

Async Support

You must ensure Apache Tomcat is configured correctly to support asynchronous requests.
This is typically handled by setting <async-supported>true</async-supported>
inside the container’s main web.xml file.

Async Logging

CAS logging automatically inserts itself into the runtime application context and will clean up
the logging context once Apache Tomcat is instructed to shut down. However,
Apache Tomcat seem to by default ignore all JAR files named log4j*.jar, which prevents
this feature from working. You may need to change the catalina.properties
and remove log4j*.jar from the jarsToSkip property. Failure to do so will prevent the container to gracefully shut down and causes logger context threads to hang.

You may need to do something similar on other containers if they skip scanning Log4j JAR files.

Docker

You may also be interested to deploy CAS via Docker [https://www.docker.com/].
See this guide for more info.

 SAML2 Authentication

layout: default
title: CAS - SAML2 Authentication

SAML2 Authentication

CAS can act as a SAML2 identity provider accepting authentication requests and producing SAML assertions.

If you intend to allow CAS to delegate authentication to an external SAML2 identity provider, you need to review this guide.

SAML SpecificationThis document solely focuses on what one might do to turn on SAML2 support inside CAS. It is not to describe/explain the numerous characteristics of the SAML2 protocol itself. If you are unsure about the concepts referred to on this page, please start with reviewing the SAML2 Specification.

SAML Endpoints

The following CAS endpoints respond to supported SAML2 profiles:

	/cas/idp/profile/SAML2/Redirect/SSO

	/cas/idp/profile/SAML2/POST/SSO

	/cas/idp/profile/SAML2/POST/SLO

	/cas/idp/profile/SAML2/Redirect/SLO

	/cas/idp/profile/SAML2/Unsolicited/SSO

	/cas/idp/profile/SAML2/SOAP/ECP

SAML2 IdP Unsolicited/SSO profile supports the following parameters:

| Parameter | Description
|———————————–|—————————————————————–
| providerId | Required. Entity ID of the service provider.
| shire | Optional. Response location (ACS URL) of the service provider.
| target | Optional. Relay state.
| time | Optional. Skew the authentication request.

IdP Metadata

The following CAS endpoints handle the generation of SAML2 metadata:

	/cas/idp/metadata

This endpoint will display the CAS IdP SAML2 metadata upon receiving a GET request. If metadata is already available and generated,
it will be displayed. If metadata is absent, one will be generated automatically.
CAS configuration below dictates where metadata files/keys will be generated and stored.

Here is a generated metadata file as an example:

<?xml version="1.0" encoding="UTF-8"?>
<EntityDescriptor xmlns="urn:oasis:names:tc:SAML:2.0:metadata" xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:shibmd="urn:mace:shibboleth:metadata:1.0" xmlns:xml="http://www.w3.org/XML/1998/namespace"
 xmlns:mdui="urn:oasis:names:tc:SAML:metadata:ui" entityID="ENTITY_ID">
 <IDPSSODescriptor protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <Extensions>
 <shibmd:Scope regexp="false">SCOPE</shibmd:Scope>
 </Extensions>
 <KeyDescriptor use="signing">
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>...</ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </KeyDescriptor>
 <KeyDescriptor use="encryption">
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>...</ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </KeyDescriptor>

 <NameIDFormat>urn:mace:shibboleth:1.0:nameIdentifier</NameIDFormat>
 <NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-format:transient</NameIDFormat>

 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 Location="https://HOST_NAME/cas/idp/profile/SAML2/POST/SLO"/>
 <SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 Location="https://HOST_NAME/cas/idp/profile/SAML2/POST/SSO"/>
 <SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
 Location="https://HOST_NAME/cas/idp/profile/SAML2/Redirect/SSO"/>
 </IDPSSODescriptor>
</EntityDescriptor>

Server Configuration

Server ConfigurationIf you have deployed CAS in an external application server/servlet container (i.e. Apache Tomcat) you will need to make sure that the server is adjusted to handle large-enough HttpHeaderSize and HttpPostSize values (i.e. 2097152). The embedded container that ships with CAS handles this automatically.

Mapping Endpoints

Note that CAS metadata endpoints for various bindings are typically available under /cas/idp/.... If you
mean you use an existing metadata file whose binding endpoints begin with /idp/..., you may need to deploy
CAS at the root context path so it’s able to respond to those requests. (i.e. https://sso.example.org/cas/login becomes
https://sso.example.org/login). Alternatively, you may try to use URL-rewriting route requests from /idp/ to /cas/idp/,etc.

SP Metadata

If the SP you wish to integrate with does not produce SAML metadata, you may be able to
use this service [https://www.samltool.com/sp_metadata.php] to create the metadata,
save it in an XML file and then reference and register it with CAS for the SP.

Configuration

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-saml-idp</artifactId>
 <version>${cas.version}</version>
</dependency>

You may also need to declare the following Maven repository in
your CAS overlay to be able to resolve dependencies:

<repositories>
 ...
 <repository>
 <id>shibboleth-releases</id>
 <url>https://build.shibboleth.net/nexus/content/repositories/releases</url>
 </repository>
 ...
</repositories>

To see the relevant list of CAS properties, please review this guide.

SAML Services

SAML relying parties and services must be registered within the CAS service registry similar to the following example:

{
 "@class" : "org.apereo.cas.support.saml.services.SamlRegisteredService",
 "serviceId" : "the-entity-id-of-the-sp",
 "name" : "SAMLService",
 "id" : 10000003,
 "evaluationOrder" : 10,
 "metadataLocation" : "http://www.testshib.org/metadata/testshib-providers.xml"
}

The following fields are available for SAML services:

| Field | Description
|————————————–|——————————————————————
| metadataLocation | Location of service metadata defined from system files, classpath, directories or URL resources.
| metadataSignatureLocation | Location of the metadata signing certificate/public key to validate the metadata which must be defined from system files or classpath. If defined, will enforce the SignatureValidationFilter validation filter on metadata.
| metadataMaxValidity | If defined, will enforce the RequiredValidUntilFilter validation filter on metadata.
| signAssertions | Whether assertions should be signed. Default is false.
| signResponses | Whether responses should be signed. Default is true.
| encryptAssertions | Whether assertions should be encrypted. Default is false.
| requiredAuthenticationContextClass | If defined, will specify the SAML authentication context class in the final response. If undefined, the authentication class will either be urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified or urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport depending on the SAML authentication request.
| requiredNameIdFormat | If defined, will force the indicated Name ID format in the final SAML response.
| metadataCriteriaPattern | If defined, will force an entity id filter on the metadata aggregate based on the PredicateFilter to include/exclude specific entity ids based on a valid regex pattern.
| metadataCriteriaDirection | If defined, will force an entity id filter on the metadata aggregate based on PredicateFilter. Allowed values are INCLUDE,EXCLUDE.
| metadataCriteriaRoles | If defined, will whitelist the defined metadata roles (i.e. SPSSODescriptor, IDPSSODescriptor). Default is SPSSODescriptor.
| metadataCriteriaRemoveEmptyEntitiesDescriptors | Controls whether to keep entities descriptors that contain no entity descriptors. Default is true.
| metadataCriteriaRemoveRolelessEntityDescriptors | Controls whether to keep entity descriptors that contain no roles. Default is true.
| attributeNameFormats | Map that defines attribute name formats for a given attribute name to be encoded in the SAML response.
| nameIdQualifier | If defined, will overwrite the NameQualifier attribute of the produced subject’s name id.
| serviceProviderNameIdQualifier | If defined, will overwrite the SPNameQualifier attribute of the produced subject’s name id.

Metadata Aggregates

CAS services are fundamentally recognized and loaded by service identifiers taught to CAS typically via
regular expressions. This allows for common groupings of applications and services by
url patterns (i.e. “Everything that belongs to example.org is registered with CAS).
With aggregated metadata, CAS essentially does double
authorization checks because it will first attempt to find the entity id
in its collection of resolved metadata components and then it looks to
see if that entity id is authorized via the pattern that is assigned to
that service definition. This means you can do one of several things:

	Open up the pattern to allow everything that is authorized in the metadata.

	Restrict the pattern to only a select few entity ids found in the
metadata. This is essentially the same thing as defining metadata criteria
to filter down the list of resolved relying parties and entity ids except that its done
after the fact once the metadata is fully loaded and parsed.

	You can also instruct CAS to filter metadata
entities by a defined criteria at resolution time when it reads the
metadata itself. This is essentially the same thing as forcing the pattern
to match entity ids, except that it’s done while CAS is reading the
metadata and thus load times are improved.

Attribute Name Formats

Attribute name formats can be specified per relying party in the service registry.

{
 "@class": "org.apereo.cas.support.saml.services.SamlRegisteredService",
 "serviceId" : "the-entity-id-of-the-sp",
 "name": "SAML Service",
 "id": 100001,
 "attributeNameFormats":
 {
 "@class": "java.util.HashMap",
 "attributeName": "basic|uri|unspecified|custom-format-etc"
 }
}

You may also have the option to define attributes and their relevant name format globally
via CAS properties. To see the relevant list of CAS properties, please review this guide.

Attribute Release

Attribute filtering and release policies are defined per SAML service.
See this guide for more info.

A few additional policies specific to SAML services are also provided below.

InCommon Research and Scholarship

A specific attribute release policy is available to release the attribute bundles [https://spaces.internet2.edu/display/InCFederation/Research+and+Scholarship+Attribute+Bundle]
needed for InCommon’s Research and Scholarship service providers:

{
 "@class": "org.apereo.cas.support.saml.services.SamlRegisteredService",
 "serviceId": "entity-ids-allowed-via-regex",
 "name": "SAML",
 "id": 10,
 "metadataLocation": "path/to/incommon/metadata.xml",
 "attributeReleasePolicy": {
 "@class": "org.apereo.cas.services.ChainingAttributeReleasePolicy",
 "policies": ["java.util.ArrayList",
 [
 {"@class": "org.apereo.cas.support.saml.services.InCommonRSAttributeReleasePolicy"}
]
]
 }
}

Pattern Matching Entity Ids

In the event that an aggregate is defined containing multiple entity ids, the below attribute release policy may be used to release a collection of allowed attributes to entity ids grouped together by a regular expression pattern:

{
 "@class": "org.apereo.cas.support.saml.services.SamlRegisteredService",
 "serviceId": "entity-ids-allowed-via-regex",
 "name": "SAML",
 "id": 10,
 "metadataLocation": "path/to/incommon/metadata.xml",
 "attributeReleasePolicy": {
 "@class": "org.apereo.cas.support.saml.services.PatternMatchingEntityIdAttributeReleasePolicy",
 "allowedAttributes" : ["java.util.ArrayList", ["cn", "mail", "sn"]],
 "fullMatch" : "true",
 "entityIds" : "entityId1|entityId2|somewhere.+"
 }
}

Name ID Selection

Each service may specify a required Name ID format. If left undefined, the metadata will be consulted to find the right format.
The Name ID value is always simply the authenticated user that is designed to be returned to this service. In other words, if you
decide to configure CAS to return a particular attribute as
the authenticated user name for this service,
that value will then be used to construct the Name ID along with the right format.

Dynamic Metadata

CAS also supports the Dynamic Metadata Query Protocol [https://spaces.internet2.edu/display/InCFederation/Metadata+Query+Protocol]
which is a REST-like API for requesting and receiving arbitrary metadata. In order to configure a CAS SAML service to retrieve its metadata
from a Metadata query server, the metadata location must be configured to point to the query server instance. Here is an example:

{
 "@class" : "org.apereo.cas.support.saml.services.SamlRegisteredService",
 "serviceId" : "the-entity-id-of-the-sp",
 "name" : "SAMLService",
 "id" : 10000003,
 "evaluationOrder" : 10,
 "metadataLocation" : "http://mdq.server.org/entities/{0}"
}

...where {0} serves as an entityID placeholder for which metadata is to be queried.

SP Integrations

A number of SAML2 service provider integrations are provided natively by CAS. To learn more,
please review this guide.

Troubleshooting

To enable additional logging, modify the logging configuration file to add the following:

<AsyncLogger name="org.opensaml" level="debug" additivity="false">
 <AppenderRef ref="console"/>
 <AppenderRef ref="file"/>
</AsyncLogger>

 Custom Multifactor Authentication

layout: default
title: CAS - Custom Multifactor Authentication

Custom Multifactor Authentication

To create your own custom multifactor authentication provider, you will need to design components that primarily register a customized authentication flow into the CAS webflow engine under a unique identifier. Later on, you will also need to consider strategies by which your custom multifactor authentication provider can be triggered.

Provider ID

Each multifactor provider is assigned a unique identifier that is typically mapped or made equal to the underlying webflow. The unique identifier can be any arbitrary string of your choosing, provided it’s kept distinct and sensible as it, depending on use case, may be used in other systems and by other applications to act as a trigger.

For the purposes of this guide, let’s choose mfa-custom as our provider id.

Webflow XML Configuration

The flow configuration file needs to be placed inside a src/main/resources/webflow/mfa-custom directory, named as mfa-custom.xml whose outline is sampled below:

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/webflow http://www.springframework.org/schema/webflow/spring-webflow.xsd">

 <var name="credential" class="org.example.CustomCredential" />
 <on-start>
 <evaluate expression="initialFlowSetupAction" />
 </on-start>

 <action-state id="initializeLoginForm">
 <evaluate expression="initializeLoginAction" />
 <transition on="success" to="viewLoginForm"/>
 </action-state>

 <view-state id="viewLoginForm" view="..." model="credential">
 <binder>
 ...
 </binder>
 <on-entry>
 <set name="viewScope.principal" value="conversationScope.authentication.principal" />
 </on-entry>
 <transition on="submit" bind="true" validate="true" to="realSubmit"/>
 </view-state>

 <action-state id="realSubmit">
 <evaluate expression="finalAuthenticationWebflowAction" />
 <transition on="success" to="success" />
 <transition on="error" to="initializeLoginForm" />
 </action-state>

 <end-state id="success" />
</flow>

Register Webflow Configuration

The custom provider itself is its own standalone webflow that is then registered with the primary authentication flow.

public class CustomAuthenticatorWebflowConfigurer extends AbstractCasMultifactorWebflowConfigurer {
 public static final String MFA_EVENT_ID = "mfa-custom";
 private final FlowDefinitionRegistry flowDefinitionRegistry;

 public CustomAuthenticatorWebflowConfigurer(FlowBuilderServices flowBuilderServices,
 FlowDefinitionRegistry loginFlowDefinitionRegistry,
 FlowDefinitionRegistry flowDefinitionRegistry) {
 super(flowBuilderServices, loginFlowDefinitionRegistry, flowDefinitionRegistry);
 this.flowDefinitionRegistry = flowDefinitionRegistry;
 }

 @Override
 protected void doInitialize() throws Exception {
 registerMultifactorProviderAuthenticationWebflow(getLoginFlow(),
 MFA_EVENT_ID, this.flowDefinitionRegistry);
 }
}

Design Provider

Multifactor authentication providers in CAS are represented in forms of MultifactorAuthenticationProvider instances.
The outline of the provider is briefly displayed below and much of its behavior is removed in favor of defaults.

public class CustomMultifactorAuthenticationProvider extends AbstractMultifactorAuthenticationProvider {
 private static final long serialVersionUID = 4789727148634156909L;
}

Register Provider

The custom webflow configuration needs to be registered with CAS. The outline of the configuration registration is sampled and summarized below:

package org.example.cas;

@Configuration("CustomAuthenticatorSubsystemConfiguration")
public class CustomAuthenticatorSubsystemConfiguration {
 ...
 @Bean
 public FlowDefinitionRegistry customFlowRegistry() {
 final FlowDefinitionRegistryBuilder builder = new FlowDefinitionRegistryBuilder(applicationContext, flowBuilderServices);
 builder.setBasePath("classpath*:/webflow");
 builder.addFlowLocationPattern("/mfa-custom/*-webflow.xml");
 return builder.build();
 }

 @Bean
 public MultifactorAuthenticationProvider customAuthenticationProvider() {
 final CustomMultifactorAuthenticationProvider p = new CustomMultifactorAuthenticationProvider();
 p.setId("mfa-custom");
 return p;
 }

 @Bean
 public CasWebflowConfigurer customWebflowConfigurer() {
 return new CustomAuthenticatorWebflowConfigurer(
 flowBuilderServices,
 loginFlowDefinitionRegistry,
 customFlowRegistry());
 }
 ...
}

Do not forget to register the configuration class with CAS. See this guide for better details.

Triggers

The custom authentication webflow can be triggered using any of the supported options

 Monitoring / Statistics

layout: default
title: CAS - Monitoring & Statistics

Monitoring / Statistics

The following endpoints are available and secured by CAS:

| URL | Description
|———————————–|——————————————
| /status/dashboard | The control panel to CAS server functionality and management.
| /status | Monitor CAS status and other underlying components.
| /status/sso | Describes if there exists an active SSO session for this request tied to this browser session.
| /status/swf | Describes the current configured state of CAS webflow in JSON.
| /status/stats | Visual representation of CAS statistics with graphs and charts, etc.
| /status/logging | Monitor CAS logs in a streaming fashion and review the audit log.
| /status/config | Visual representation of application properties and configuration.
| /status/ssosessions | Report of active SSO sessions and authentications. Examine attributes, services and log users out.
| /status/trustedDevs | Reports on the registered trusted devices/browsers.
| /status/authnEvents | When enabled, reports on the events captured by CAS.
| /status/attrresolution | Examine resolution of user attributes via CAS attribute resolution.

The following endpoints are secured and available
by Spring Boot actuators [http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html]:

| URL | Description
|———————————–|————————————————————————————-
| /status/autoconfig | Describes how the CAS application context is auto-configured.
| /status/beans | Displays all CAS application context internal Spring beans.
| /status/configprops | List of internal configuration properties.
| /status/dump | Produces a thread dump for the running CAS server.
| /status/env | Produces a collection of all application properties.
| /status/health | Reports back general health status of the system, produced by various monitors.
| /status/info | CAS version information and other system traits.
| /status/metrics | Runtime metrics and stats.
| /status/mappings | Describes how requests are mapped and handled by CAS.
| /status/shutdown | Shut down the application via a POST. Disabled by default.
| /status/restart | Restart the application via a POST. Disabled by default.
| /status/refresh | Refresh the application configuration via a POST to let components reload and recognize new values.

Actuator endpoints provided by Spring Boot can also be visually managed and monitored via the Spring Boot Administration Server.

Security

All urls that are scoped to the /status endpoint are modeled after Spring Boot’s own actuator endpoints
and by default are considered sensitive. By default, no endpoint is enabled or allowed access.

Endpoints may go through multiple levels and layers of security described here:

	All endpoints may be globally considered sensitive.

	Spring Boot’s actuator endpoints may be individually marked as sensitive or enabled.

	Similarly, CAS endpoints may be individually marked as sensitive or enabled.

	In the event that access to an endpoint is allowed, (i.e endpoint is enabled and is not marked as sensitive), CAS will attempt
to control access by enforcing rules via IP address matching, delegating to itself, etc. The /status endpoint is always protected by an IP pattern. The other administrative endpoints however can optionally be protected by the CAS server. Failing to secure these endpoints via a CAS instance will have CAS fallback onto the IP range.
	If you decide to protect other administrative endpoints via CAS itself, you will need to provide
a reference to the list of authorized users in the CAS configuration. You may also enforce authorization
rules via Service-based Access Strategy features of CAS.

Reverse ProxiesAllowing access to the /status endpoint
via IP address matching needs to be very carefully designed, specially in cases where CAS is deployed behind a proxy
such as Apache. Be sure to test access rules and policies carefully or otherwise devise your own.

To see the relevant list of CAS properties, please review this guide.

Spring Security

Alternatively, you may design the security of CAS /status endpoints to take advantage
of Spring Security [http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-monitoring.html].
After all, that’s what sensitive is designed to do. Using this model and via CAS settings, you get to define
the authentication scheme (i.e. BASIC) as well
as the protected/ignored paths and pre-defined “master” username/password that is used for authentication.
If the password is left blank, a random password will be generated/printed in the logs by default.
Besides the master credentials, backend authentication support via LDAP and JDBC storage facilities are also available.

Support is enabled by including the following module in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-webapp-config-security</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Monitors

Monitors allow you to watch the internal state of a given CAS component.
See this guide for more info.

Distributed Tracing

Support for distributed tracing of requests is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-sleuth</artifactId>
 <version>${cas.version}</version>
</dependency>

[image: image]

For most users Sleuth [https://cloud.spring.io/spring-cloud-sleuth/] should be invisible, and all
interactions with external systems should be instrumented automatically.

Trace data is captured automatically and passed along to Zipkin [https://github.com/openzipkin/zipkin], which helps
gather timing data needed to troubleshoot latency problems.

To see the relevant list of CAS properties, please review this guide.

Troubleshooting

To enable additional logging, modify the logging configuration file to add the following:

 <AsyncLogger name="org.springframework.cloud" level="debug" additivity="false">
 <AppenderRef ref="casConsole"/>
 <AppenderRef ref="casFile"/>
</AsyncLogger>

Metrics

Metrics allow to gain insight into the running CAS software, and provide ways to measure the behavior of critical components.
See this guide for more info.

 MongoDb Authentication

layout: default
title: CAS - MongoDb Authentication

MongoDb Authentication

Verify and authenticate credentials against a MongoDb [https://www.mongodb.org/] instance.
Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-mongo</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties,
please review this guide.

Accounts are expected to be found as such in collections:

{
 "username": "casuser",
 "password": "34598dfkjdjk3487jfdkh874395",
 "first_name": "john",
 "last_name": "smith"
}

 Ticketing

layout: default
title: CAS - Configuring Ticketing Components

Ticketing

There are two core configurable ticketing components:

	TicketRegistry - Provides for durable ticket storage.

	ExpirationPolicy - Provides a policy framework for ticket expiration semantics.

Ticket Registry

The deployment environment and technology expertise generally determine the particular TicketRegistry component.
A cache-backed implementation is recommended for HA deployments, while the default
DefaultTicketRegistry in-memory component may be suitable for small deployments.

To see the relevant list of CAS properties, please review this guide.

Default (In-Memory) Ticket Registry

The default registry uses a memory-backed internal map for ticket storage and retrieval.
This component does not preserve ticket state across restarts and is not a suitable solution
for clustered CAS environments that are deployed in active/active mode.

To see the relevant list of CAS properties, please review this guide.

Cache-Based Ticket Registries

Cached-based ticket registries provide a high-performance solution for ticket storage in high availability
deployments. Components for the following caching technologies are provided:

	Hazelcast

	Ehcache

	Ignite

	Memcached

	Infinispan

RDBMS Ticket Registries

RDBMS-based ticket registries provide a distributed ticket store across multiple CAS nodes.
Components for the following caching technologies are provided:

	JPA

NoSQL Ticket Registries

CAS also provides support for a variety of other databases, including Redis, MongoDb and Apache
Cassandra, for ticket storage and persistence:

	Infinispan

	Couchbase

	Redis

	MongoDb

	DynamoDb

Secure Cache Replication

A number of cache-based ticket registries support secure replication of ticket data across the wire,
so that tickets are encrypted and signed on replication attempts to prevent sniffing and eavesdrops.
See this guide for more info.

Ticket Expiration Policies

CAS supports a pluggable and extensible policy framework to control the expiration policy of
ticket-granting tickets (TGT) and service tickets (ST).
See this guide for details on how to configure the expiration policies.

 Custom Authentication Strategies

layout: default
title: CAS - Design Authentication Strategies

Custom Authentication Strategies

While authentication support in CAS for a variety of systems is somewhat comprehensive and complex, a common deployment use case is the task of designing custom authentication schemes. This document describes the necessary steps needed to design and register a custom authentication strategy (i.e. AuthenticationHandler) in CAS.

This guide really is intended for developers with a basic-to-medium familiarity with Spring, Spring Boot and Spring Webflow. This is NOT a tutorial to be used verbatim via copy/paste. It is instead a recipe for developers to extend CAS based on specialized requirements.

Overview

The overall tasks may be categorized as such:

	Design the authentication handler.

	Register the authentication handler with the CAS authentication engine.

	Ley CAS to recognize the authentication configuration.

Design

First step is to define the skeleton for the authentication handler itself. This is the core principal component whose job is to declare support for a given type of credential only to then attempt to validate it and produce a successful result. The core parent component from which all handlers extend is the AuthenticationHandler interface.

With the assumption that the type of credentials used here deal with the traditional username and password, noted by the infamous UsernamePasswordCredential below, a more appropriate skeleton to define for a custom authentication handler may seem like the following example:

package com.example.cas;

public class MyAuthenticationHandler extends AbstractUsernamePasswordAuthenticationHandler {
 ...
 protected HandlerResult authenticateUsernamePasswordInternal(final UsernamePasswordCredential credential,
 final String originalPassword) {
 if (everythingLooksGood()) {
 return createHandlerResult(credential,
 this.principalFactory.createPrincipal(username), null);
 }
 throw new FailedLoginException("Sorry, you are a failure!");
 }
 ...
}

Review

	Authentication handlers have the ability to produce a fully resolved principal along with attributes. If you have the ability to retrieve attributes from the same place as the original user/principal account store, the final Principal object that is resolved here must then be able to carry all those attributes and claims inside it at construction time.

	The last parameter, null, is effevtively a collection of warnings that is eventually worked into the authentication chain and conditionally shown to the user. Examples of such warnings include password status nearing an expiration date, etc.

	Authentication handlers also have the abililty to block authentication by throwing a number of specific exceptions. A more common exception to throw back is FailedLoginException to note authentication failure. Other specific exceptions may be thrown to indicate abnormalities with the account status itself, such as AccountDisabledException.

	Various other components such as PrincipalNameTransformers, PasswordEncoders and such may also be injected into our handler if need be, though these are skipped for now in this post for simplicity.

Register

Once the handler is designed, it needs to be registered with CAS and put into the authenication engine.
This is done via the magic of @Configuration classes that are picked up automatically at runtime, per your approval,
whose job is to understand how to dynamically modify the application context.

package com.example.cas;

@Configuration("MyAuthenticationEventExecutionPlanConfiguration")
@EnableConfigurationProperties(CasConfigurationProperties.class)
public class MyAuthenticationEventExecutionPlanConfiguration
 implements AuthenticationEventExecutionPlanConfigurer {
 @Autowired
 private CasConfigurationProperties casProperties;

 @Bean
 public AuthenticationHandler myAuthenticationHandler() {
 final MyAuthenticationHandler handler = new MyAuthenticationHandler();
 /*
 Configure the handler by invoking various setter methods.
 Note that you also have full access to the collection of resolved CAS settings.
 Note that each authentication handler may optionally qualify for an 'order`
 as well as a unique name.
 */
 return h;
 }

 @Override
 public void configureAuthenticationExecutionPlan(final AuthenticationEventExecutionPlan plan) {
 if (feelingGoodOnAMondayMorning()) {
 plan.registerAuthenticationHandler(myAuthenticationHandler());
 }
 }
}

Now that we have properly created and registered our handler with the CAS authentication machinery, we just need to ensure that CAS is able to pick up our special configuration. To do so, create a src/main/resources/META-INF/spring.factories file and reference the configuration class in it as such:

org.springframework.boot.autoconfigure.EnableAutoConfiguration=com.example.cas.MyAuthenticationEventExecutionPlanConfiguration

To learn more about the registration strategy, please see this guide [http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-developing-auto-configuration.html].

At runtime, CAS will try to automatically detect all components and beans that advertise themselves as AuthenticationEventExecutionPlanConfigurers. Each detected component is then invoked to register its own authentication execution plan. The result of this operation at the end will produce a ready-made collection of authentication handlers that are ready to be invoked by CAS in the given order defined, if any.

 Logout and Single Logout (SLO)

layout: default
title: CAS - Logout & Single Logout

Logout and Single Logout (SLO)

There are potentially many active application sessions during a CAS single sign-on session, and the distinction between
logout and single logout is based on the number of sessions that are ended upon a logout operation. The scope of logout
is determined by where the action takes place:

	Application logout - ends a single application session

	CAS logout - ends the CAS SSO session

Note that the logout action in each case has no effect on the other in the simple case. Ending an application session
does not end the CAS session and ending the CAS session does not affect application sessions. This is a common cause of
confusion for new users and deployers of an SSO system.

The single logout support in CAS attempts to reconcile the disparity between CAS logout and application logout. When
CAS is configured for SLO, it attempts to send logout messages to every application that requested authentication to
CAS during the SSO session. While this is a best-effort process, in many cases it works well and provides a consistent
user experience by creating symmetry between login and logout.

SSO SessionsIt is possible to review the current collection of active SSO sessions,
and determine if CAS itself maintains an active SSO session via the CAS administration panels.

CAS Logout

Per the CAS Protocol, the /logout endpoint is responsible for destroying the current SSO session.
Upon logout, it may also be desirable to redirect back to a service. This is controlled via specifying the redirect
link via the service parameter. The specified service must be registered in the service registry of CAS and enabled and
CAS must be allowed to follow service redirects.

To see the relevant list of CAS properties, please review this guide.

Single Logout (SLO)

CAS is designed to support single sign out: it means that it will be able to invalidate client application sessions in addition to its own SSO session.Whenever a ticket-granting ticket is explicitly expired, the logout protocol will be initiated. Clients that do not support the
logout protocol may notice extra requests in their access logs that appear not to do anything.

Usage Warning!Single Logout is turned on by default.

When a CAS session ends, it notifies each of the services that the SSO session is no longer valid, and that relying parties
need to invalidate their own session. Remember that the callback submitted to each CAS-protected application is simply
a notification; nothing more. It is the responsibility of the application to intercept that notification and properly
destroy the user authentication session, either manually, via a specific endpoint or more commonly via a CAS client library that supports SLO.

Also note that since SLO is a global event, all applications that have an authentication record with CAS will by default be
contacted, and this may disrupt user experience negatively if those applications are individually distinct from each other.
As an example, if user has logged into a portal application and an email application, logging out of one through SLO will
also destroy the user session in the other which could mean data loss if the application is not carefully managing its session and user activity.

To see the relevant list of CAS properties, please review this guide.

Back Channel

CAS sends an HTTP POST message directly to the service. This is the traditional way of performing notification to the service.

Front Channel

CAS issues asynchronous AJAX POST logout requests via JSONP to authenticated services.
The expected behaviour of the CAS client is to invalidate the application web session.

SLO Requests

The way the notification is done (back or front channel) is configured at a service level
through the logoutType property. This value is set to LogoutType.BACK_CHANNEL by default. The message is
delivered or the redirection is sent to the URL presented in the service parameter of the original CAS protocol ticket request.

A sample SLO message:

<samlp:LogoutRequest
 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 ID="[RANDOM ID]"
 Version="2.0"
 IssueInstant="[CURRENT DATE/TIME]">
 <saml:NameID>@NOT_USED@</saml:NameID>
 <samlp:SessionIndex>[SESSION IDENTIFIER]</samlp:SessionIndex>
</samlp:LogoutRequest>

The session identifier is the CAS service ticket ID that was provided to the service when it originally authenticated
to CAS. The session identifier is used to correlate a CAS session with an application session; for example, the SLO
session identifier maps to a servlet session that can subsequently be destroyed to terminate the application session.

Turning Off Single Logout

To see the relevant list of CAS properties, please review this guide.

Single Logout Per Service

Registered applications with CAS have the option to control single logout behavior individually via
the Service Management component. Each registered service in the service registry will include configuration
that describes how to the logout request should be submitted. This behavior is controlled via the logoutType property
which allows to specify whether the logout request should be submitted via back/front channel or turned off for this application.

Sample configuration follows:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "testId",
 "name" : "testId",
 "id" : 1,
 "logoutType" : "BACK_CHANNEL"
}

Service Endpoint for Logout Requests

By default, logout requests are submitted to the original service id collected at the time of authentication.
CAS has the option to submit such requests to a specific service endpoint that is different
from the original service id, and of course can be configured on a per-service level. This is useful in
cases where the application that is integrated with CAS
does not exactly use a CAS client that supports intercepting such requests and instead, exposes a
different endpoint for its logout operations.

To configure a service specific endpoint, try the following example:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "testId",
 "name" : "testId",
 "id" : 1,
 "logoutType" : "BACK_CHANNEL",
 "logoutUrl" : "https://web.application.net/logout"
}

Asynchronous SLO Messages

By default, backchannel logout messages are sent to endpoint in an asynchronous fashion.
This behavior can be modified via CAS settings. To see the relevant list of CAS properties, please review this guide.

SSO Session vs. Application Session

In order to better understand the SSO session management of CAS and how it regards application sessions,
one important note is to be first and foremost considered:

CAS is NOT a session managerApplication session is the responsibility of the application.

CAS wants to maintain and control the SSO session in the form of
the TicketGrantingTicket and a TGT id which is shared between the
user-agent and the CAS server in the form of a secure cookie.

CAS is not an application session manager in that it is the
responsibility of the applications to maintain and control their own
application sessions. Once authentication is completed, CAS is
typically out of the picture in terms of the application sessions. Therefore, the expiration policy
of the application session itself is entirely independent of CAS and may be loosely coordinated
and adjusted depending on the ideal user experience in the event that the application session expires.

In the event that Single Logout is not activated, typically, application may expose a logout endpoint in order to destroy the session and next, redirect
the agent to the CAS logout endpoint in order to completely destroy the SSO session as well.

Here’s a brief diagram that demonstrates various application session configuration and interactions with CAS:

[image:]

 REST Authentication

layout: default
title: CAS - REST Authentication

REST Authentication

Be CarefulThis documentation describes
how to delegate and submit authentication requests to a remote REST endpoint. It has nothing
to do with the native CAS REST API, whose configuration and caveats are
documented here.

REST authentication is enabled by including the following dependencies in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-rest-authentication</artifactId>
 <version>${cas.version}</version>
</dependency>

This allows the CAS server to reach to a remote REST endpoint via a POST for verification of credentials.
Credentials are passed via an Authorization header whose value is Basic XYZ where XYZ is a
Base64 encoded version of the credentials.

The response that is returned must be accompanied by a 200
status code where the body should contain id and attributes fields, the latter being optional,
which represent the authenticated principal for CAS:

{"@c":".SimplePrincipal","id":"casuser","attributes":{}}

Expected responses from the REST endpoint are mapped to CAS as such:

| Code | Result
|————————|———————————————
| 200 | Successful authentication.
| 403 | Produces a AccountDisabledException
| 404 | Produces a AccountNotFoundException
| 423 | Produces a AccountLockedException
| 428 | Produces a AccountExpiredException
| Other | Produces a FailedLoginException

Configuration

To see the relevant list of CAS properties, please review this guide.

 JPA Ticket Registry

layout: default
title: CAS - JPA Ticket Registry

JPA Ticket Registry

The JPA Ticket Registry allows CAS to store client authenticated state
data (tickets) in a database back-end such as MySQL.

Usage Warning!Using a RDBMS as
the back-end persistence choice for Ticket Registry state management is a fairly unnecessary and complicated
process. Unless you are already outfitted with clustered RDBMS technology and the resources to manage it,
the complexity is likely not worth the trouble.

Support is enabled by adding the following module into the Maven overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-jpa-ticket-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

Configuration

To see the relevant list of CAS properties, please review this guide.

TGT Locking

TGTs are almost always updated within the same transaction they are loaded from the database in, but
after some processing delays. Because of this, the JPA Ticket Registry utilizes write locks on all loads of
TGTs from the database to prevent deadlocks and ensure usage meta-data consistency when a single
TGT is used concurrently by multiple requests.

This reduces performance of the JPA Ticket Registry and may not be desirable or necessary for some deployments depending
the database in use, its configured transaction isolation level, and expected concurrency of a single
TGT.

To see the relevant list of CAS properties, please review this guide.

 DynamoDb Service Registry

layout: default
title: CAS - DynamoDb Service Registry

DynamoDb Service Registry

Stores registered service data in a DynamoDb [https://aws.amazon.com/dynamodb/] instance.

Support is enabled by adding the following module into the Maven overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-dynamodb-service-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

Configuration

You will need to provide CAS with your AWS credentials [https://aws.amazon.com/console/]. Also, to gain a better understanding
of DynamoDb’s core components and concepts, please start with this guide [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html] first. To see the relevant list of CAS properties, please review this guide.

Troubleshooting

To enable additional logging, configure the log4j configuration file to add the following levels:

...
<AsyncLogger name="com.amazonaws" level="debug" additivity="false">
 <AppenderRef ref="console"/>
 <AppenderRef ref="file"/>
</AsyncLogger>
...

Auto Initialization

Upon startup and if the services registry database is blank,
the registry is able to auto initialize itself from default
JSON service definitions available to CAS.

To see the relevant list of CAS properties, please review this guide.

 Extending CAS Configuration

layout: default
title: CAS - Configuration Extensions

Extending CAS Configuration

Being a Spring Boot [https://github.com/spring-projects/spring-boot] application at its core, designing and extending CAS configuration components very much comes down to the following guide [https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-developing-auto-configuration.html] some aspects of which are briefly highlighted in this document.

Configuration Components

This is the recoommended approach to create additional Spring beans, override existing ones and simply inject your own custom behavior into the CAS application runtime.

No XMLYou are still given the ability to configure and inject beans into the application context via XML configuration files. We STRONGLY recommend that you abandon that approach altogether.

Given CAS’ adoption of Spring Boot, most if not all of the old XML configuration is transformed into @Configuration components. These are classes declared by each relevant module that are automatically picked up at runtime whose job is to declare and configure beans and register them into the application context. Another way of thinking about it is, components that are decorated with @Configuration are loose equivalents of old XML configuration files that are highly organized where <bean> tags are translated to java methods tagged with @Bean and configured dynamically.

Design

To design your own configuration class, take inspiration from the following sample:

package org.apereo.cas.custom.config;

@Configuration("SomethingConfiguration")
@EnableConfigurationProperties(CasConfigurationProperties.class)
public class SomethingConfiguration {

 @Autowired
 private CasConfigurationProperties casProperties;

 @Autowired
 @Qualifier("someOtherBeanId")
 private SomeBean someOtherBeanId;

 @RefreshScope
 @Bean
 public MyBean myBean() {
 return new MyBean();
 }
}

	The @Bean definitions can also be tagged with @RefreshScope to become auto-reloadable when the CAS context is refreshed as a result of an external property change.

	@Configuration classes can be assigned an order with @Order(1984) which would place them in an ordered queue waiting to be loaded in that sequence.

	To be more explicit, @Configuration classes can also be loaded exactly before/after another @Configuration component with @AutoConfigureBefore or @AutoConfigureAfter annotations.

Register

How are @Configuration components picked up? Each CAS module declares its set of configuration components as such, per guidelines laid out by Spring Boot [https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-developing-auto-configuration.html]:

	Create a src/main/resources/META-INF/spring.factories file

	Add the following into the file:

org.springframework.boot.autoconfigure.EnableAutoConfiguration=org.apereo.cas.custom.config.SomethingConfiguration

Overrides

What if you needed to override the definition of a CAS-provided bean and replace it entirely with your own?

This is where @Conditional components come to aid. Most component/bean definitions in CAS are registered with some form of @Conditional tag that indicates to the bootstrapping process to ignore their creation, if a bean definition with the same id is already defined. This means you can create your own configuration class, register it and the design a @Bean definition only to have the context utilize yours rather than what ships with CAS by default.

CAS Properties

The collection of CAS-provided settings are all encapsulated inside a CasConfigurationProperties component. This is a parent class that brings all elements of the entire CAS platform together and binds values to the relevant fields inside in a very type-safe manner. The configuration binding is typically done via @EnableConfigurationProperties(CasConfigurationProperties.class) on the actual configuration class.

Prefix NotationNote that all CAS-provided settings exclusively begin with the prefix cas. Other frameworks and packages upon which CAS depends may present their own configuration naming scheme. Note the difference.

If you wish to design your own and extend the CAS configuration file, you can surely follow the same approach with the @EnableConfigurationProperties annotation or use the good ol’ @Value.

 Authentication Events

layout: default
title: CAS - Configuring Authentication Events

Authentication Events

CAS provides a facility for consuming and recording authentication events into persistent storage. This functionality is similar to the records
kept by the Audit log except that the functionality and storage format is controlled via CAS itself rather than the audit engine.
Additionally, while audit data may be used for reporting and monitoring, events stored into storage via this functionality may later be assessed
in a historical fashion to assess authentication requests, evaluate risk associated with them and take further action upon them. Events are primarily
designed to be consumed by the developer and subsequent CAS modules, while audit data is targeted at deployers for end-user functionality and reporting.

By default, no events are recorded by this functionality.

Recorded Data

The following metadata is captured and recorded by the event machinery when enabled:

| Field | Description
|———————————–|—————————————————————–
| principalId | The principal id of the authenticated subject
| timestamp | Timestamp of this event
| creationTime | Timestamp of this authentication event
| clientIpAddress | Client IP address
| serverIpAddress | Server IP address
| agent | User-Agent of the browser
| geoLatitude | Geo Latitude of authentication request’s origin
| geoLongitude | Geo Longitude of authentication request’s origin
| geoAccuracy | Accuracy measure of the location
| geoTimestamp | Timestamp of the geo location request

GeoLocation

CAS attempts to record the geolocation properties of the authentication requests, by allowing the browser to ask for user’s consent.
Should consent not be granted or geolocation not supported by the browser, CAS will ignore the geolocation data when it attempts to
record the event. To learn more, please review this guide.

Configuration

The following storage backends are available for consumption of events.

MongoDb

Stores authentication events into a MongoDb NoSQL database.

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-events-mongo</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

JPA

Stores authentication events into a RDBMS.

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-events-jpa</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Memory

Stores authentication events into memory for a very limited time period.

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-events-memory</artifactId>
 <version>${cas.version}</version>
</dependency>

 Multifactor Authentication Triggers

layout: default
title: CAS - Multifactor Authentication Triggers

Multifactor Authentication Triggers

The following triggers can be used to activate and instruct CAS to navigate to a multifactor authentication flow.
To see the relevant list of CAS properties, please review this guide.

The execution order of multifactor authentication triggers is outlined below:

	Adaptive

	Global

	Opt-In Request Parameter

	REST Endpoint

	Groovy Script

	Principal Attribute Per Application

	Global Principal Attribute Predicate

	Global Principal Attribute

	Global Authentication Attribute

	Applications

	Grouper

	Other

Each trigger should properly try to ignore the authentication request, if applicable confguration is not found for its activation and execution.

Also note that various CAS modules present and inject their own internal triggers into the CAS application runtime in order to translate protocol-specific authentication requests into multifactor authentication flows.

Global

MFA can be triggered for all applications and users regardless of individual settings.

To see the relevant list of CAS properties, please review this guide.

Applications

MFA can be triggered for a specific application registered inside the CAS service registry.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "^(https|imaps)://.*",
 "id" : 100,
 "name": "test",
 "multifactorPolicy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceMultifactorPolicy",
 "multifactorAuthenticationProviders" : ["java.util.LinkedHashSet", ["mfa-duo"]]
 }
}

Global Principal Attribute

MFA can be triggered for all users/subjects carrying a specific attribute that matches one of the conditions below.

	Trigger MFA based on a principal attribute(s) whose value(s) matches a regex pattern.
Note that this behavior is only applicable if there is only a single MFA provider configured, since that would allow CAS
to know what provider to next activate.

	Trigger MFA based on a principal attribute(s) whose value(s) EXACTLY matches an MFA provider.
This option is more relevant if you have more than one provider configured or if you have the flexibility of assigning provider ids to attributes as values.

Needless to say, the attributes need to have been resolved for the principal prior to this step.

Global Principal Attribute Predicate

This is a more generic variant of the above trigger. It may be useful in cases where there is more than one provider configured and available in the application runtime and you need to design a strategy to dynamically decide on the provider that should be activated for the request.

The decision is handed off to a Predicate implementation that define in a Groovy script whose location is taught to CAS.

The Groovy script predicate may be designed as such:

import org.apereo.cas.authentication.*
import java.util.function.*
import org.apereo.cas.services.*

class PredicateExample implements Predicate<MultifactorAuthenticationProvider> {

 def service
 def principal
 def providers
 def logger

 public PredicateExample(service, principal, providers, logger) {
 this.service = service
 this.principal = principal
 this.providers = providers
 this.logger = logger
 }

 @Override
 boolean test(final MultifactorAuthenticationProvider p) {
 ...
 }
}

Global Authentication Attribute

MFA can be triggered for all users/subjects whose authentication event/metadata has resolved a specific attribute
that matches one of the below conditions:

	Trigger MFA based on a authentication attribute(s) whose value(s) matches a regex pattern.
Note that this behavior is only applicable if there is only a single MFA provider configured, since that would allow CAS
to know what provider to next activate.

	Trigger MFA based on a authentication attribute(s) whose value(s) EXACTLY matches an MFA provider.
This option is more relevant if you have more than one provider configured or if you have the flexibility of assigning
provider ids to attributes as values.

Needless to say, the attributes need to have been resolved for the authentication event prior to this step. This trigger
is generally useful when the underlying authentication engine signals CAS to perform additional validation of credentials.
This signal may be captured by CAS as an attribute that is part of the authentication event metadata which can then trigger
additional multifactor authentication events.

An example of this scenario would be the “Access Challenge response” produced by RADIUS servers.

Adaptive

MFA can be triggered based on the specific nature of a request that may be considered outlawed. For instance,
you may want all requests that are submitted from a specific IP pattern, or from a particular geographical location
to be forced to go through MFA. CAS is able to adapt itself to various properties of the incoming request
and will route the flow to execute MFA. See this guide for more info.

Grouper

MFA can be triggered by Grouper [https://www.internet2.edu/products-services/trust-identity-middleware/grouper/]
groups to which the authenticated principal is assigned.
Groups are collected by CAS and then cross-checked against all available/configured MFA providers.
The group’s comparing factor MUST be defined in CAS to activate this behavior
and it can be based on the group’s name, display name, etc where
a successful match against a provider id shall activate the chosen MFA provider.

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-grouper</artifactId>
 <version>${cas.version}</version>
</dependency>

You will also need to ensure grouper.client.properties is available on the classpath
with the following configured properties:

grouperClient.webService.url = http://192.168.99.100:32768/grouper-ws/servicesRest
grouperClient.webService.login = banderson
grouperClient.webService.password = password

Groovy

MFA can be triggered based on the results of a groovy script of your own design. The outcome of the script should determine the MFA provider id that CAS should attempt to activate.

The outline of the groovy script is shown below as a sample:

import java.util.*

class SampleGroovyEventResolver {
 def String run(final Object... args) {
 def service = args[0]
 def registeredService = args[1]
 def authentication = args[2]
 def logger = args[3]

 ...

 return "mfa-duo"
 }
}

REST

MFA can be triggered based on the results of a remote REST endpoint of your design. If the endpoint is configured,
CAS shall issue a POST, providing the principal and the service url.

The body of the response in the event of a successful 200 status code is expected to be the MFA provider id which CAS should activate.

Opt-In Request Parameter

MFA can be triggered for a specific authentication request, provided
the initial request to the CAS /login endpoint contains a parameter
that indicates the required MFA authentication flow. The parameter name
is configurable, but its value must match the authentication provider id
of an available MFA provider described above.

https://.../cas/login?service=...&<PARAMETER_NAME>=<MFA_PROVIDER_ID>

Principal Attribute Per Application

As a hybrid option, MFA can be triggered for a specific application registered inside the CAS service registry, provided
the authenticated principal carries an attribute that matches a configured attribute value. The attribute
value can be an arbitrary regex pattern. See below to learn about how to configure MFA settings.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "^(https|imaps)://.*",
 "id" : 100,
 "name": "test",
 "multifactorPolicy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceMultifactorPolicy",
 "multifactorAuthenticationProviders" : ["java.util.LinkedHashSet", ["mfa-duo"]],
 "principalAttributeNameTrigger" : "memberOf",
 "principalAttributeValueToMatch" : "faculty|allMfaMembers"
 }
}

Entity Id Request Parameter

In situations where authentication is delegated to CAS, most commonly via a Shibboleth Identity Provider [https://shibboleth.net/products/identity-provider.html],
the entity id may be passed as a request parameter to CAS to be treated as a CAS registered service.
This allows one to activate multifactor authentication policies based on the entity id that is registered
in the CAS service registry. As a side benefit, the entity id can take advantage of all other CAS features
such as access strategies and authorization rules simply because it’s just another service definition known to CAS.

To learn more about integration options and to understand how to delegate authentication to CAS
from a Shibboleth identity provider, please see this guide.

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-shibboleth</artifactId>
 <version>${cas.version}</version>
</dependency>

The entityId parameter may be passed as such:

https://.../cas/login?service=http://idp.example.org&entityId=the-entity-id-passed

Custom

While support for triggers may seem extensive, there is always that edge use case that would have you trigger MFA based on a special set of requirements. To learn how to design your own triggers, please see this guide.

 Surrogate Authentication

layout: default
title: CAS - Surrogate Authentication

Surrogate Authentication

Surrogate authentication is the ability to authenticate on behalf of another user. The two actors in this case are:

	The primary admin user whose credentials are verified upon authentication.

	The surrogate user, selected by the admin, to which CAS will switch after credential verification and is one that is linked to the single sign-on session.

Surrogate authentication is enabled by including the following dependencies in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-surrogate-authentication</artifactId>
 <version>${cas.version}</version>
</dependency>

Configuration

Surrogate Account Storage

The following account stores may be configured and used to locate surrogates authorized for a particular user.

Static

Surrogate accounts may be defined statically in the CAS configuration. To see the relevant list of CAS properties, please review this guide.

JSON

Similar to above, except that surrogate accounts may be defined in an external JSON file whose path is specified via the CAS configuration. The syntax of the JSON file should match the following snippet:

{
 "casuser": ["jsmith", "banderson"],
 "adminuser": ["jsmith", "tomhanks"]
}

To see the relevant list of CAS properties, please review this guide.

LDAP

Surrogate accounts may also be retrieved from an LDAP instance. Such accounts are expected to be found in a configured attribute defined for the primary user in LDAP whose value(s) may be examined against a regular expression pattern of your own choosing to further narrow down the list of authorized surrogate accounts. To see the relevant list of CAS properties, please review this guide.

Surrogate Account Selection

The surrogate user selection can happen via the following ways.

Preselected

This is the case where the surrogate user identity is known beforehand and is provided to CAS upon login using a special syntax.
When entering credentials, the following syntax should be used:

[surrogate-userid][separator][primary-userid]

For example, if you are casuser and you need to switch to jsmith as the surrogate user, the credential id provided to CAS would be jsmith+casuser where the separator is + and can be altered via the CAS configuration. You will need to provide your own password of course.

GUI

This is the case where the surrogate user identity is not known beforehand, and you wish to choose the account from a prepopulated list. When entering credentials, the following syntax should be used:

[separator][primary-userid]

For example, if you are casuser and you need to locate the surrogate account to which you may want to switch, the credential id provided to CAS would be +casuser where the separator is + and can be altered via the CAS configuration. You will need to provide your own password of course.

 Webflow Errors Customization

layout: default
title: CAS - Web Flow Customization

Webflow Errors Customization

By default CAS is configured to recognize and handle a number of exceptions for web flow during authentication. Each exception has the specific message bundle mapping in messages.properties So that a specific message could be presented to end users on the login form. Any un-recognized or un-mapped exceptions results in the UNKNOWN mapping with a generic Invalid credentials. message.

To map custom exceptions in the webflow, one would need map the exception in CAS settings and then define the relevant error in messages.properties:

authenticationFailure.MyAuthenticationException=Authentication has failed, but it did it my way!

To see the relevant list of CAS properties, please review this guide.

 CSS

layout: default
title: CAS - User Interface Customization

CSS

The default styles are all contained in two single files located in src/main/resources/static/css/cas.css and src/main/resources/static/css/admin.css. This location is set in cas-theme-default.properties.
If you would like to create your own css/custom.css file, for example, you will need to update standard.custom.css.file key in that file.

standard.custom.css.file=/css/cas.css
admin.custom.css.file=/css/admin.css
cas.javascript.file=/js/cas.js

Responsive Design

CSS media queries bring responsive design features to CAS which would allow adopter to focus on one theme for all appropriate devices and platforms. These queries are defined in the same cas.css file.

Javascript

If you need to add some JavaScript, feel free to append src/main/resources/static/js/cas.js.

You can also create your own custom.js file, for example, and call it from within bottom.html like so:

<script type="text/javascript" src="/js/custom.js"></script>

If you are developing themes per service, each theme also has the ability to specify a custom cas.js file under the cas.javascript.file setting.

The following Javascript libraries are utilized by CAS automatically:

	JQuery

	JQuery UI

	JQuery Cookie

	Bootstrap

Asynchronous Script Loading

CAS will attempt load the aforementioned script libraries asynchronously so as to not block the page rendering functionality.
The loading of script files is handled by the head.js library [http://headjs.com] and is the responsibility of cas.js file.

The only script that is loaded synchronously is the head.js library itself.

Because scripts, and specially JQuery are loaded asynchronously, any custom Javascript that is placed inside the page
that relies on these libraries may not immediately function on page load. CAS provides a callback function that allows
adopters to be notified when script loading has completed and this would be a safe time to execute/load other Javascript-related
functions that depend on JQuery inside the actual page.

function jqueryReady() {
 //Custom Javascript tasks can be carried out now via JQuery...
}

Checking CAPSLOCK

CAS will display a brief warning when the CAPSLOCK key is turned on during the typing of the credential password. This check is enforced by the cas.js file.

Browser Cookie Support

For CAS to honor a single sign-on session, the browser MUST support and accept cookies. CAS will notify the
user if the browser has turned off its support for cookies. This behavior is controlled via the cas.js file.

Preserving Anchor Fragments

Anchors/fragments may be lost across redirects as the server-side handler of the form post ignores the client-side anchor, unless appended to the form POST url.
This is needed if you want a CAS-authenticated application to be able to use anchors/fragments when bookmarking.

Changes to cas.js

/**
 * Prepares the login form for submission by appending any URI
 * fragment (hash) to the form action in order to propagate it
 * through the re-direct (i.e. store it client side).
 * @param form The login form object.
 * @returns true to allow the form to be submitted.
 */
function prepareSubmit(form) {
 // Extract the fragment from the browser's current location.
 var hash = decodeURIComponent(self.document.location.hash);

 // The fragment value may not contain a leading # symbol
 if (hash && hash.indexOf("#") === -1) {
 hash = "#" + hash;
 }

 // Append the fragment to the current action so that it persists to the redirected URL.
 form.action = form.action + hash;
 return true;
}

Changes to Login Form

<form method="post" id="fm1" th:object="${credential}">
 onsubmit="return prepareSubmit(this);">

 Duo Security Authentication

layout: default
title: CAS - Duo Security Authentication

Duo Security Authentication

Duo Security [https://www.duo.com] is a two-step verification service the provides additional security for access to institutional and personal data.

Duo offers several options for authenticating users:

	a mobile push notification and one-button verification of identity to a smartphone (requires the free Duo Mobile app)

	a one-time code generated on a smartphone

	a one-time code generated by Duo and sent to a handset via SMS text messaging

	a telephone call from that will prompt you to validate the login request

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-duo</artifactId>
 <version>${cas.version}</version>
</dependency>

You may need to add the following repositories to the WAR overlay:

<repository>
 <id>duo</id>
 <url>https://dl.bintray.com/uniconiam/maven</url>
</repository>

Multiple Instances

CAS multifactor authentication support for Duo Security allows
multiple Duo providers to be configured with distinct ids each of
which may be connected to a separate Duo Security instance with a different configuration.
This behavior allows more sensitive applications to be connected
to a Duo instance that has more strict and secure authentication policies.

For this behavior to function, separate unique ids of your own choosing need to be assigned to each Duo Security
provider. Each provider instance is registered with CAS and activated in the authentication
flows as necessary. The provider id need not be defined if there is only a single Duo instance available.

User Account Status

If users are unregistered with Duo Security or allowed through via a direct bypass,
CAS will query Duo Security for the user account apriori to learn
whether user is registered or configured for direct bypass. If the account status matches either of those conditions or if the
user account is not registered yet the new-user enrollment policy allows folks to skip registration, CAS will bypass
Duo Security altogether, shall not challenge the user
and will also NOT report back a multifactor-enabled authentication context back to the application.

Non-Browser MFA

The Duo Security module of CAS is able to also support non-browser based multifactor authentication [https://duo.com/docs/authapi] requests.
In order to trigger this behavior, applications (i.e. curl, REST APIs, etc) need to specify a special
Content-Type to signal to CAS that the request is submitted from a non-web based environment.

In order to successfully complete the authentication flow, CAS must also be configured with a method
of primary authentication that is able to support non-web based environments.

Here is an example using curl that attempts to authenticate into a service by first exercising
basic authentication while identifying the request content type as application/cas. It is assumed that the
service below is configured in CAS with a special multifactor policy that forces the flow
to pass through Duo Security as well.

curl --location --header "Content-Type: application/cas" https://apps.example.org/myapp -L -u casuser:Mellon

Configuration

To see the relevant list of CAS properties, please review this guide.

 Ignite Ticket Registry

layout: default
title: CAS - Ignite Ticket Registry

Ignite Ticket Registry

Ignite integration is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-ignite-ticket-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

This registry stores tickets in an Ignite [http://ignite.apache.org/] instance.

Distributed Cache

Distributed caches are recommended for HA architectures since they offer fault tolerance in the ticket storage subsystem.

TLS Replication

Ignite supports replication over TLS for distributed caches composed of two or more nodes. To learn more about TLS replication with Ignite,
see this resource [https://apacheignite.readme.io/docs/ssltls].

Configuration

To see the relevant list of CAS properties, please review this guide.

Troubleshooting

	You will need to ensure that network communication across CAS nodes is allowed and no firewall or other component is blocking traffic.

	If nodes external to CAS instances are utilized, ensure that each cache manager specifies a name that matches the Ignite configuration
itself.

	You may also need to adjust your expiration policy to allow for a larger time span, specially for service tickets depending on network
traffic and communication delay across CAS nodes particularly in the event that a node is trying to join the cluster.

 Configuration Security

layout: default
title: CAS - Securing Configuration Properties

Configuration Security

This document describes how to retrieve and secure CAS configuration and properties.

Standalone

If you are running CAS in standalone mode without the presence of the configuration server,
you can take advantage of built-in Jasypt [http://www.jasypt.org/] functionality to decrypt sensitive CAS settings.

Jasypt supplies command-line tools useful for performing encryption, decryption, etc. In order to use the tools, you should download the Jasypt distribution. Once unzipped, you will find a jasypt-$VERSION/bin directory a number of bat|sh scripts that you can use for encryption/decryption operations (encrypt|decrypt).(bat|sh).

Encrypted settings need to be placed into CAS configuration files as:

cas.something.sensitive={cipher}FKSAJDFGYOS8F7GLHAKERGFHLSAJ

You also need to instruct CAS to use the proper algorithm, decryption key and other relevant parameters
when attempting to decrypt settings. To see the relevant list of CAS properties for this
feature, please review this guide.

Spring Cloud

Securing CAS settings and decrypting them is entirely handled by
the Spring Cloud [https://github.com/spring-cloud/spring-cloud-config] project
as described in this guide.

The CAS configuration server exposes /encrypt and /decrypt endpoints to support encrypting and decrypting values.
Both endpoints accept a POST payload; you can use /encrypt to secure and encrypt settings and place them inside your CAS configuration.
CAS will auto-decrypt at the appropriate moment.

To see the relevant list of CAS properties for this feature, please review this guide.

JCE Requirementsto use the encryption and decryption
features you need the full-strength "Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files"
installed in your JVM version (if it’s not there by default).

To encrypt a given setting, use:

curl https://config.server.endpoint/encrypt -d sensitiveValue

Then, copy the encrypted setting into your CAS configuration using the method specified below.

URL EncodingBe careful with curl.
You may have to use --data-urlencode or set an explicit Content-Type: text/plain
to account for special characters such as +.

If you wish to manually encrypt and decrypt settings to ensure the functionality is sane, use:

export ENCRYPTED=`curl https://config.server.endpoint/encrypt -d sensitiveValue | python -c 'import sys,urllib;print urllib.quote(sys.stdin.read().strip())'`
echo $ENCRYPTED
curl https://config.server.endpoint/decrypt -d $ENCRYPTED | python -c 'import sys,urllib;print urllib.quote(sys.stdin.read().strip())'

Properties that are prefixed with {cipher} are automatically decrypted by the CAS configuration server at runtime, such as:

cas
 something
 sensitive: '{cipher}FKSAJDFGYOS8F7GLHAKERGFHLSAJ'

Or:

Note that there are no quotes around the value!
cas.something.sensitive={cipher}FKSAJDFGYOS8F7GLHAKERGFHLSAJ

Vault

You can also store sensitive settings inside Vault [https://www.vaultproject.io/].
Vault can store your existing secrets, or it can dynamically generate new secrets
to control access to third-party resources or provide time-limited credentials for your infrastructure.
To lean more about Vault and its installation process, please visit the project website.

Once vault is accessible and configured inside CAS, support is provided via the following dependency:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-core-configuration-cloud-vault</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties for this feature, please review this guide.

With CAS, secrets are picked up at startup of the application server. CAS uses the data and settings
from the application name (i.e. cas) and active profiles to determine contexts paths in
which secrets should be stored and later fetched.

These context paths typically are:

/secret/{application}/{profile}
/secret/{application}

As an example, you may write the following CAS setting to Vault:

vault write secret/cas/native <setting-name>=<value>

CAS will execute the equivalent of the following command to read settings later when needed:

vault read secret/cas/native

All settings and secrets that are stored inside Vault may be reloaded at any given time.
To lean more about CAS allows you to reload configuration changes, please review this guide.
To lean more about how configuration is managed and profiled by CAS, please review this guide.

Troubleshooting

To enable additional logging, modify the logging configuration file to add the following:

<AsyncLogger name="org.springframework.cloud.vault" level="debug" additivity="false">
 <AppenderRef ref="console"/>
 <AppenderRef ref="file"/>
</AsyncLogger>

 Couchbase Service Registry

layout: default
title: CAS - Couchbase Service Registry

Couchbase Service Registry

Couchbase integration is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-couchbase-service-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

Couchbase [http://www.couchbase.com] is a highly available, open source NoSQL database server based on
Erlang/OTP [http://www.erlang.org] and its mnesia database. The intention of this registry is to leverage the capability of Couchbase
server to provide high availability to CAS.

Configuration

To see the relevant list of CAS properties, please review this guide.

The Couchbase integration currently assumes that the service registries are stored
in their own buckets. Optionally set passwords for the buckets, optionally setup
redundancy and replication as per normal Couchbase configuration.

The only truly mandatory setting is the list of nodes.
The other settings are optional, but this is designed to store data in buckets
so in reality the bucket property must also be set.

Auto Initialization

Upon startup and configuration permitting,
the registry is able to auto initialize itself from default
JSON service definitions available to CAS.

To see the relevant list of CAS properties, please review this guide.

Troubleshooting

To enable additional logging, configure the log4j configuration file to add the following
levels:

...
<AsyncLogger name="com.couchbase" level="debug" additivity="false">
 <AppenderRef ref="console"/>
 <AppenderRef ref="file"/>
</AsyncLogger>
...

 WAR Overlay Installation

layout: default
title: CAS - Overlay Installation

WAR Overlay Installation

CAS installation is a fundamentally source-oriented process, and we recommend a
WAR overlay (1) project to organize
customizations such as component configuration and UI design.
The output of a WAR overlay build is a cas.war file that can be deployed to a servlet container like
Apache Tomcat.

What is a WAR Overlay?

Overlays are a strategy to combat repetitive code and/or resources. Rather than downloading the CAS codebase and building from source,
overlays allow you to download a pre-built vanilla CAS web application server provided by the project itself and override/insert specific behavior into it.
At build time, the Maven/Gradle installation process will attempt to download the provided binary artifact first. Then the tool will locate your configuration files and settings made available inside the same project directory and will merge those into the downloaded artifact in order to produce
one wholesome archive (i.e. cas.war) . Overridden artifacts may include resources, java classes, images, CSS and javascript files. In order for the merge
process is successfully execute, the location and names of the overridden artifacts locally must EXACTLY match that of those provided by the project
inside the originally downloaded archive.

It goes without saying that while up-front ramp-up time could be slightly complicated, there are significant advantages to this approach:

	There is no need to download/build from the source.

	Upgrades are tremendously easier in most cases by simply adjusting the build script to download the newer CAS release.

	Rather than hosting the entire software source code, as the deployer you ONLY keep your own local customizations which makes change tracking much easier.

	Tracking changes inside a source control repository is very lightweight, again simply because only relevant changes (and not the entire software) is managed.

Managing Overlays

Every aspect of CAS can be controlled by
adding, removing, or modifying files in the overlay; it’s also possible and indeed common to customize the behavior of
CAS by adding third-party components that implement CAS APIs as Java source files or dependency references.

The process of working with an overlay, whether Maven or Gradle, can be summarized in the following steps:

	Start with and build the provided basic vanilla build/deployment.

	Identify the artifacts from the produced build that need changes. These artifacts are generally produced by the build in the target or build directory for Maven or Gradle, respectively.

	Copy the identified artifiacts from the identified above directories over to the src directory.

	Create the src directory and all of its children, if they don’t already exist.

	Copied paths and filenames MUST EXACTLY MATCH their build counterparts, or the change won’t take effect. See the table below to understand how to map folders and files from the build to src.

	After changes, rebuild and repeat the process as many times as possible.

	Double check your changes inside the built binary artifact to make sure the overlay process is working.

Be ExactDo NOT copy everything produced by the build. Attempt to keep changes and customizations to a minimum and only grab what you actually need. Make sure the deployment environment is kept clean and precise, or you incur the risk of terrible upgrade issues and painful headaches.

CAS WAR Overlays

CAS WAR overlay projects are provided for reference and study.

Review Branch!The below repositories point you towards their master branch.
You should always make sure the branch you are on matches the version of CAS you wish to configure and deploy. The master
branch typically points to the latest stable release of the CAS server. Check the build configuration and if inappropriate,
use git branch -a to see available branches, and then git checkout [branch-name] to switch if necessary.

| Project | Build Directory | Source Directory
|———————————————————————–|———————————————–|———————–
| CAS Maven WAR Overlay [https://github.com/apereo/cas-overlay-template] | cas/build/libs/cas.war!WEB-INF/classes/ | src/main/resources
| CAS Gradle WAR Overlay [https://github.com/apereo/cas-gradle-overlay-template] | cas/build/libs/cas.war!WEB-INF/classes/ | src/main/resources

To construct the overlay project, you neeed to copy directories and files that you need to customize in the build directory over to the source directory.

The Gradle overlay also provides additional tasks to explode the binary artifact first before re-assembling it again.
You may need to do that step manually yourself to learn what files/directories need to be copied over to the source directory.

Note: Do NOT ever make changes in the above-noted build directory. The changesets will be cleaned out and
set back to defaults every time you do a build. Put overlaid components inside the source directory
and/or other instructed locations to avoid surprises.

CAS Configuration Server Overlay

َSee this Maven WAR overlay [https://github.com/apereo/cas-configserver-overlay] for more details.

To learn more about the configuration server, please review this guide.

Dockerized Deployment

See this guide for more info.

Servlet Container

CAS can be deployed to a number of servlet containers. See this guide for more info.

Spring Configuration

CAS server depends heavily on the Spring framework. Two modes of configuration are available. Note that both modes
can be used at the same time.

XML

There is a src/main/resources/deployerConfigContext.xml which CAS adopters may include in the overlay for environment-specific CAS settings.
Note that in most cases, modifying this file should be unnecessary.

Groovy

The CAS application context is able to load a src/main/resources/deployerConfigContext.groovy.
For advanced use cases, CAS beans can be dynamically defined via the Groovy programming language [http://www.groovy-lang.org/].

beans {
 xmlns([context:'http://www.springframework.org/schema/context'])
 xmlns([lang:'http://www.springframework.org/schema/lang'])
 xmlns([util:'http://www.springframework.org/schema/util'])

 exampleBean(org.apereo.cas.example.ExampleBean) {
 beanProperty = propertyValue
 }
}

Additionally, dynamic reloadable Groovy beans can be defined in the src/main/resources/deployerConfigContext.xml. These definitions
are directly read from a .groovy script which is monitored for changes and reloaded automatically.
Here is a dynamic messenger bean defined whose definition is read from a Messenger.groovy file,
and is monitored for changes every 5 seconds.

<lang:groovy id="messenger"
 refresh-check-delay="5000"
 script-source="classpath:Messenger.groovy">
 <lang:property name="message" value="Hello, CAS!" />
</lang:groovy>

The contents of the Messenger.groovy must resolve to a valid Java/Groovy class:

class ExampleMessenger implements Messenger {
 String message = "Welcome"

 String getMessage() {
 this.message
 }
 void setMessage(String message) {
 this.message = message
 }
}

Custom and Third-Party Source

It is common to customize or extend the functionality of CAS by developing Java components that implement CAS APIs or
to include third-party source by Maven dependency references. Including third-party source is trivial; simply include
the relevant dependency in the overlay pom.xml or build.gradle file. In order to include custom Java source, it should be included under a src/main/java directory in the overlay project source tree.

├── src
│ ├── main
│ │ ├── java
│ │ │ └── edu
│ │ │ └── sso
│ │ │ └── middleware
│ │ │ └── cas
│ │ │ ├── audit
│ │ │ │ ├── CompactSlf4jAuditTrailManager.java
│ │ │ ├── authentication
│ │ │ │ └── principal
│ │ │ │ └── UsernamePasswordCredentialsToPrincipalResolver.java
│ │ │ ├── services
│ │ │ │ └── JsonServiceRegistryDao.java
│ │ │ ├── util
│ │ │ │ └── X509Helper.java
│ │ │ └── web
│ │ │ ├── HelpController.java
│ │ │ ├── flow
│ │ │ │ ├── AbstractForgottenCredentialAction.java
│ │ │ └── util
│ │ │ ├── ProtocolParameterAuthority.java

Maven Caveat

Also, note that for any custom Java component to compile and be included in the final cas.war file, the pom.xml
in the Maven overlay must include a reference to the Maven Java compiler so classes can compile.

Here is a sample Maven build configuration:

...

<build>
 <plugins>
...
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>${java.source.version}</source>
 <target>${java.target.version}</target>
 </configuration>
 </plugin>
...
 </plugins>
 <finalName>cas</finalName>
</build>

Dependency Management

Each release of CAS provides a curated list of dependencies it supports. In practice, you do not need to provide a version for any of
these dependencies in your build configuration as the CAS distribution is managing that for you. When you upgrade CAS itself, these dependencies will be upgraded as well in a consistent way.

The curated list of dependencies contains a refined list of third party libraries. The list is available as a standard Bills of Materials (BOM).

To configure your project to inherit from the BOM, simply set the parent:

Maven

<parent>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-bom</artifactId>
 <version>${cas.version}</version>
</parent>

Not everyone likes inheriting from the BOM.
You may have your own corporate standard parent that you need to use,
or you may just prefer to explicitly declare all your Maven configuration.

If you don’t want to use the cas-server-support-bom, you can still
keep the benefit of the dependency management (but not the plugin management)
by using a scope=import dependency:

<dependencyManagement>
 <dependencies>

 <!-- Override a dependency by including it BEFORE the BOM -->
 <dependency>
 <groupId>org.group</groupId>
 <artifactId>artifact-name</artifactId>
 <version>X.Y.Z</version>
 </dependency>

 <dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-bom</artifactId>
 <version>${cas.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Gradle

To take advantage of the CAS BOM via Gradle, please use this guide [https://plugins.gradle.org/plugin/io.spring.dependency-management]
and configure the Gradle build accordingly.

(1) WAR Overlays [http://maven.apache.org/plugins/maven-war-plugin/overlays.html]

 Ticket Expiration Policies

layout: default
title: CAS - Configuring Ticket Expiration Policy Components

Ticket Expiration Policies

CAS supports a pluggable and extensible policy framework to control the expiration policy of ticket-granting
tickets (TGT), proxy-granting tickets (PGT), service tickets (ST) and proxy tickets (PT).

Policies Are Not Ticket-SpecificTicket expiration policies are not specific to a
particular kind of ticket, so it is possible to apply a policy intended for service tickets to ticket-granting tickets, although
it may make little sense to do so.

Unless noted otherwise, all ticket expiration policy values should be specified in seconds as the unit of measure.

Ticket-Granting Ticket Policies

TGT expiration policy governs the time span during which an authenticated user may grant STs with a valid (non-expired) TGT without
having to re-authenticate. An attempt to grant a ST with an expired TGT would require the user to re-authenticate
to obtain a new (valid) TGT.

Default

This is default option, which provides a hard-time out as well as a sliding window.

To see the relevant list of CAS properties, please review this guide.

Timeout

The expiration policy applied to TGTs provides for most-recently-used expiration policy, similar to a Web server session timeout.
For example, a 2-hour time span with this policy in effect would require a TGT to be used every 2 hours or less, otherwise
it would be marked as expired.

To see the relevant list of CAS properties, please review this guide.

Hard Timeout

The hard timeout policy provides for finite ticket lifetime as measured from the time of creation. For example, a 4-hour time span
for this policy means that a ticket created at 1PM may be used up until 5PM; subsequent attempts to use it will mark it expired
and the user will be forced to re-authenticate.

To see the relevant list of CAS properties, please review this guide.

Throttled

The throttled timeout policy extends the TimeoutExpirationPolicy with the concept of throttling where a ticket may be used at
most every N seconds. This policy was designed to thwart denial of service conditions where a rogue or misconfigured client
attempts to consume CAS server resources by requesting high volumes of service tickets in a short time.

To see the relevant list of CAS properties, please review this guide.

Never

The never expires policy allows tickets to exist indefinitely.

Usage Warning!Use of this policy has significant consequences to overall
security policy and should be enabled only after thorough review by a qualified security team. There are also implications to
server resource usage for the ticket registries backed by filesystem storage. Since disk storage for tickets can never be reclaimed
for those registries with this policy in effect, use of this policy with those ticket registry implementations
is strongly discouraged.

Service Ticket Policies

ST expiration policy governs the time span during which an authenticated user may attempt to validate an ST.

Default

This is the default policy applied to service tickets where a ticket is expired after a fixed number of uses or after a maximum
period of inactivity elapses. This is the default and only option.

To see the relevant list of CAS properties, please review this guide.

Proxy Ticket Policies

PT expiration policy governs the time span during which an authenticated user may attempt to validate an PT.

Default

This is the default policy applied to proxy tickets where a ticket is expired after a fixed number of uses or after a maximum
period of inactivity elapses. This is default and only option.

To see the relevant list of CAS properties, please review this guide.

Proxy-Granting Ticket Policies

PGT expiration policy governs the time span during which CAS may grant PTs with a valid (non-expired) PGT.
At this time, the expiration policy assigned to proxy-granting tickets is controlled by the same policy
assigned to ticket-granting tickets.

To see the relevant list of CAS properties, please review this guide.

 Views

layout: default
title: CAS - User Interface Customization

Views

The views are found at src/main/resources/templates. To see the relevant list of CAS properties, please review this guide.

Warning Before Accessing Application

CAS has the ability to warn the user before being redirected to the service. This allows users to be made aware whenever an application uses CAS to log them in.
(If they don’t elect the warning, they may not see any CAS screen when accessing an application that successfully relies upon an existing CAS single sign-on session.)
Some CAS adopters remove the ‘warn’ checkbox in the CAS login view and don’t offer this interstitial advisement that single sign-on is happening.

...
<input id="warn"
 name="warn"
 value="true"
 tabindex="3"
 th:accesskey="#{screen.welcome.label.warn.accesskey}"
 type="checkbox" />
<label for="warn" th:utext="#{screen.welcome.label.warn}"/>
...

“I am at a public workstation” authentication

CAS has the ability to allow the user to opt-out of SSO, by indicating on the login page that the authentication
is happening at a public workstation. By electing to do so, CAS will not honor the subsequent SSO session
and will not generate the TGC that is designed to do so.

...
<input id="publicWorkstation"
 name="publicWorkstation"
 value="false" tabindex="4"
 type="checkbox" />
<label for="publicWorkstation" th:utext="#{screen.welcome.label.publicstation}"/>
...

Default Service

In the event that no service is submitted to CAS, you may specify a default
service url to which CAS will redirect. Note that this default service, much like
all other services, MUST be authorized and registered with CAS.

To see the relevant list of CAS properties, please review this guide.

 CAS Spring Boot Administration

layout: default
title: CAS - Monitoring

CAS Spring Boot Administration

CAS takes advantage of the Spring Boot Admin [https://codecentric.github.io/spring-boot-admin/1.5.0/] to manage and monitor its internal state visually. As a Spring Boot Admin client, CAS registers itself with the Spring Boot Admin server over HTTP and reports back its status and health to the server’s web interface.

Admin Server

To run the Spring Boot Admin server, please use this WAR overlay [https://github.com/apereo/cas-bootadmin-overlay].

Secure EndpointsNote that the admin server's API endpoints MUST be secured. It is also best to run both the Admin server and the registering CAS server node under HTTPS, specially if credentials are used to authenticate into endpoints.

To learn more about options, please see this guide [https://codecentric.github.io/spring-boot-admin/1.5.0/].

CAS Server as Client

Each individual CAS server is given the ability to auto-register itself with the admin server, provided configuration is made available to instruct the CAS server how to locate and connect to the admin server.

Support is added by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-bootadmin-client</artifactId>
 <version>${cas.version}</version>
</dependency>

Note that CAS server’s actuator endpoints are by default secured. In order to allow secure communication between the CAS server and the Spring Boot Admin server, please see guide [https://codecentric.github.io/spring-boot-admin/1.5.0/].

Configuration

To see the relevant list of CAS properties, please review this guide.

 Configuration Server

layout: default
title: CAS - Configuration Server

Configuration Server

As your CAS deployment moves through the deployment pipeline from dev to test and into production
you can manage the configuration between those environments and be certain that applications
have everything they need to run when they migrate through the use of an external configuration server
provided by the Spring Cloud [https://github.com/spring-cloud/spring-cloud-config] project. As an alternative,
you may decide to simply run CAS in a standalone mode removing the need for external configuration server deployment,
though at the cost of losing features and capabilities relevant for a cloud deployment.

Configuration Profiles

The CAS server web application responds to the following strategies that dictate how settings should be consumed.

Standalone

This is the default configuration mode which indicates that CAS does NOT require connections to an external configuration server
and will run in an embedded standalone mode. When this option is turned on, CAS by default will attempt to locate settings and properties
inside a given directory indicated under the setting name cas.standalone.config and otherwise falls back to using /etc/cas/config as the configuration directory.
You may instruct CAS to use this setting via the methods outlined here.

Similar to the Spring Cloud external configuration server, the contents of this directory include (cas|application).(yml|properties)
files that can be used to control CAS behavior. Also note that this configuration directory can be monitored by CAS to auto-pick up changes
and refresh the application context as needed. Please review this guide to learn more.

Note that by default, all CAS settings and configuration is controlled via the embedded application.properties file in the CAS server
web application. There is also an embedded application.yml file that allows you to override all defaults if you wish to ship the configuration
inside the main CAS web application and not rely on externalized configuration files.

Settings found in external configuration files are and will be able to override the defaults provide by CAS. The naming of the configuration files
inside the CAS configuration directory follows the below pattern:

	An application.(properties|yml) file is always loaded, if found.

	Settings located inside properties|yml files whose name matches the value of spring.application.name are loaded (i.e cas.properties)

	Settings located inside properties|yml files whose name matches the value of spring.profiles.active are loaded (i.e ldap.properties).

	Profile-specific application properties outside of your packaged web application (application-{profile}.properties|yml)
This allows you to, if needed, split your settings into multiple property files and then locate them by assigning their name
to the list of active profiles (i.e. spring.profiles.active=standalone,testldap,stagingMfa)

RememberYou are advised to not overlay or otherwise
modify the built in application.properties or bootstrap.properties files. This will only complicate and weaken your deployment.
Instead try to comply with the CAS defaults and bootstrap CAS as much as possible via the defaults, override via application.yml or
use the outlined strategies. Likewise, try to instruct CAS to locate
configuration files external to its own. Premature optimization will only lead to chaos.

Spring Cloud

CAS is able to use an external and central configuration server to obtain state and settings.
The configuration server provides a very abstract way for CAS (and all of its other clients) to obtain settings from a variety
of sources, such as file system, git or svn repositories, MongoDb databases, Vault, etc. The beauty of this solution is that to the CAS
web application server, it matters not where settings come from and it has no knowledge of the underlying property sources. It simply
talks to the configuration server to locate settings and move on.

Configuration SecurityThis is a very good strategy to ensure configuration settings
are not scatted around various deployment environments leading to a more secure deployment. The configuration server need not be
exposed to the outside world, and it can safely and secure be hidden behind firewalls, etc allowing access to only authorized clients
such as the CAS server web application.

A full comprehensive guide is provided by the Spring Cloud project [https://cloud.spring.io/spring-cloud-config/spring-cloud-config.html].

Overlay

The configuration server itself, similar to CAS, can be deployed
via the following module in it own WAR overlay [https://github.com/apereo/cas-configserver-overlay]:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-webapp-config-server</artifactId>
 <version>${cas.version}</version>
</dependency>

In addition to the strategies outlined here, the configuration server
may load CAS settings and properties via the following order and mechanics:

	Profile-specific application properties outside of your packaged web application (application-{profile}.properties|yml)

	Profile-specific application properties packaged inside your jar (application-{profile}.properties|yml)

	Application properties outside of your packaged jar (application.properties|yml).

	Application properties packaged inside your jar (application.properties|yml).

The configuration and behavior of the configuration server is also controlled by its own
src/main/resources/bootstrap.properties file. By default, it runs under port 8888 at /casconfigserver inside
an embedded Apache Tomcat server whose endpoints are protected with basic authentication
where the default credentials are casuser and Mellon. Furthermore, by default it runs
under a native profile described below.

The following endpoints are secured and exposed by the configuration server:

| Parameter | Description
|———————————–|——————————————
| /encrypt | Accepts a POST to encrypt CAS configuration settings.
| /decrypt | Accepts a POST to decrypt CAS configuration settings.
| /refresh | Accepts a POST and attempts to refresh the internal state of configuration server.
| /env | Accepts a GET and describes all configuration sources of the configurtion server.
| /cas/default | Describes what the configuration server knows about the default settings profile.
| /cas/native | Describes what the configuration server knows about the native settings profile.
| /bus/refresh | Reload the configuration of all CAS nodes in the cluster if the cloud bus is turned on.
| /bus/env | Sends key/values pairs to update each CAS node if the cloud bus is turned on.

Once you have the configuration server deployed, you can observe the collection of settings via:

curl -u casuser:Mellon http://config.server.url:8888/casconfigserver/cas/native

You can also observe the collection of property sources that provide settings to the configuration server:

curl -u casuser:Mellon http://localhost:8888/casconfigserver/env

Clients and Consumers

To let the CAS server web application (or any other client for that matter) talk to the configuration server,
the following settings need to be applied to CAS’ own src/main/resources/bootstrap.properties file.
The properties to configure the CAS server web application as the client of the configuration server
must necessarily be read in before the rest of the application’s configuration is read from the configuration server, during the bootstrap phase.

spring.cloud.config.uri=http://casuser:Mellon@localhost:8888/casconfigserver
spring.cloud.config.profile=native
spring.cloud.config.enabled=true
spring.profiles.active=default

Remember that configuration server serves property sources from /{name}/{profile}/{label} to applications,
where the default bindings in the client app are the following:

"name" = ${spring.application.name}
"profile" = ${spring.profiles.active}
"label" = "master"

All of them can be overridden by setting spring.cloud.config.* (where * is “name”, “profile” or “label”).
The “label” is useful for rolling back to previous versions of configuration; with the default Config Server implementation
it can be a git label, branch name or commit id. Label can also be provided as a comma-separated list,
in which case the items in the list are tried on-by-one until one succeeds. This can be useful when working on a feature
branch, for instance, when you might want to align the config label with your branch,
but make it optional (e.g. spring.cloud.config.label=myfeature,develop).

To lean more about CAS allows you to reload configuration changes,
please review this guide.

Profiles

Various profiles exist to determine how configuration server should retrieve properties and settings.

Native

The server is configured by default to load cas.(properties|yml) files from an external location that is /etc/cas/config.
This location is constantly monitored by the server to detect external changes. Note that this location simply needs to
exist, and does not require any special permissions or structure. The name of the configuration file that goes inside this
directory needs to match the spring.application.name (i.e. cas.properties).

If you want to use additional configuration files, they need to have the
form application-<profile>.(properties|yml).
A file named application.(properties|yml) will be included by default. The profile specific
files can be activated by using the spring.profiles.include configuration option,
controlled via the src/main/resources/bootstrap.properties file:

spring.profiles.active=native
spring.cloud.config.server.native.searchLocations=file:///etc/cas/config
spring.profiles.include=profile1,profile2

An example of an external .properties file hosted by an external location follows:

cas.server.name=...

You could have just as well used a cas.yml file to host the changes.

Default

The configuration server is also able to handle git or svn based repositories that host CAS configuration.
Such repositories can either be local to the deployment, or they could be on the cloud in form of GitHub/BitBucket. Access to
cloud-based repositories can either be in form of a username/password, or via SSH so as long the appropriate keys are configured in the
CAS deployment environment which is really no different than how one would normally access a git repository via SSH.

spring.profiles.active=default
spring.cloud.config.server.git.uri=https://github.com/repoName/config
spring.cloud.config.server.git.uri=file://${user.home}/config
spring.cloud.config.server.git.username=
spring.cloud.config.server.git.password=

spring.cloud.config.server.svn.basedir=
spring.cloud.config.server.svn.uri=
spring.cloud.config.server.svn.username=
spring.cloud.config.server.svn.password=
spring.cloud.config.server.svn.default-label=trunk

Needless to say, the repositories could use both YAML and properties syntax to host configuration files.

Keep What You Need!Again, in all of the above strategies,
an adopter is encouraged to only keep and maintain properties needed for their particular deployment. It is
UNNECESSARY to grab a copy of all CAS settings and move them to an external location. Settings that are
defined by the external configuration location or repository are able to override what is provided by CAS
as a default.

MongoDb

The server is also able to locate properties entirely from a MongoDb instance.

Support is provided via the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-core-configuration-cloud-mongo</artifactId>
 <version>${cas.version}</version>
</dependency>

Note that to access and review the collection of CAS properties,
you will need to use the CAS administrative interfaces, or you may
also use your own native tooling for MongoDB to configure and inject settings.

MongoDb documents are required to be found in the collection MongoDbProperty, as the following document:

{
 "id": "kfhf945jegnsd45sdg93452",
 "name": "the-setting-name",
 "value": "the-setting-value"
}

To see the relevant list of CAS properties for this feature, please review this guide.

HashiCorp Vault

CAS is also able to use Vault [https://www.vaultproject.io/] to
locate properties and settings. Please review this guide.

Apache ZooKeeper

CAS is also able to use Apache ZooKeeper [https://zookeeper.apache.org/] to locate properties and settings.

Support is provided via the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-core-configuration-cloud-zookeeper</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties for this feature, please review this guide.

You will need to map CAS settings to ZooKeeper’s nodes that contain values. The parent node for all settings should match the configuration root value provided to CAS. Under the root, you could have folders such as cas, cas,dev, cas,local, etc where dev and local are Spring profiles.

To create nodes and values in Apache ZooKeeper, try the following commands
as a sample:

zookeeper-client -server zookeeper1:2181
create /cas cas
create /cas/config cas
create /cas/config/cas cas
create /cas/config/cas/settingName casuser::Test

Creating nodes and directories in Apache ZooKeeper may require providing a value. The above sample commands show that the value cas is provided when creating directories. Always check with the official Apache ZooKeeper guides. You may not need to do that step.

Finally in your CAS properties, the new settingName setting can be used as a reference.

cas.something.something=${settingName}

...where ${settingName} gets the value of the contents of the Apache ZooKeeper node cas/config/cas/settingName.

DynamoDb

CAS is also able to use DynamoDb [https://aws.amazon.com/dynamodb/] to locate properties and settings.

Support is provided via the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-core-configuration-cloud-dynamodb</artifactId>
 <version>${cas.version}</version>
</dependency>

The DynamoDbCasProperties table is automatically created by CAS with the following structure:

{
 "id": "primary-key",
 "name": "the-setting-name",
 "value": "the-setting-value"
}

To see the relevant list of CAS properties for this feature, please review this guide.

JDBC

CAS is also able to use a relational database to locate properties and settings.

Support is provided via the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-core-configuration-cloud-jdbc</artifactId>
 <version>${cas.version}</version>
</dependency>

By default, settings are expected to be found under a CAS_SETTINGS_TABLE that contains the fields: id, name and value.
To see the relevant list of CAS properties for this feature, please review this guide.

Composite Sources

In some scenarios you may wish to pull configuration data from multiple environment repositories.
To do this just enable multiple profiles in your configuration server’s application properties or YAML file.
If, for example, you want to pull configuration data from a Git repository as well as a SVN
repository you would set the following properties for your configuration server.

spring:
 profiles:
 active: git, svn
 cloud:
 config:
 server:
 svn:
 uri: file:///path/to/svn/repo
 order: 2
 git:
 uri: file:///path/to/git/repo
 order: 1

In addition to each repo specifying a URI, you can also specify an order property. The order property allows you to specify
the priority order for all your repositories. The lower the numerical value of the order property the
higher priority it will have. The priority order of a repository will help resolve any potential
conflicts between repositories that contain values for the same properties.

Property Overrides

The configuration server has an “overrides” feature that allows the operator to provide configuration properties to all applications that cannot be accidentally changed by the application using the normal change events and hooks. To declare overrides add a map of name-value pairs to spring.cloud.config.server.overrides. For example:

spring:
 cloud:
 config:
 server:
 overrides:
 foo: bar

This will cause the CAS server (as the client of the configuration server) to read foo=bar independent of its own configuration.

Securing Settings

To learn how sensitive CAS settings can be secured via encryption, please review this guide.

Reloading Changes

To lean more about CAS allows you to reload configuration changes,
please review this guide.

Clustered Deployments

CAS uses the Spring Cloud Bus [http://cloud.spring.io/spring-cloud-static/spring-cloud.html]
to manage configuration in a distributed deployment. Spring Cloud Bus links nodes of a
distributed system with a lightweight message broker. This can then be used to broadcast state
changes (e.g. configuration changes) or other management instructions.

To learn how sensitive CAS settings can be secured via encryption, please review this guide.

 Views

layout: default
title: CAS - User Interface Customization

Views

CAS uses Thymeleaf [http://www.thymeleaf.org/] to build and render views. Thymeleaf’s main goal is to bring elegant natural templates to your development workflow — HTML pages that can be correctly displayed in browsers and also work as static prototypes, allowing for stronger collaboration in development teams.

Configuration

CAS views are found at src/main/resources/templates, which translates to classpath:/templates/ when deployed. While this is the default setting, you are also allowed options to move the directory to a location outside the main CAS web application, or if needed, deploy CAS with an entirely different set of views in one tier while still preserving the default look and feel for another deployment tier.

To see the relevant list of CAS properties, please review this guide.

Warning Before Accessing Application

CAS has the ability to warn the user before being redirected to the service. This allows users to be made aware whenever an application uses CAS to log them in.
(If they don’t elect the warning, they may not see any CAS screen when accessing an application that successfully relies upon an existing CAS single sign-on session.)
Some CAS adopters remove the ‘warn’ checkbox in the CAS login view and don’t offer this interstitial advisement that single sign-on is happening.

...
<input id="warn"
 name="warn"
 value="true"
 tabindex="3"
 th:accesskey="#{screen.welcome.label.warn.accesskey}"
 type="checkbox" />
<label for="warn" th:utext="#{screen.welcome.label.warn}"/>
...

“I am at a public workstation” authentication

CAS has the ability to allow the user to opt-out of SSO, by indicating on the login page that the authentication
is happening at a public workstation. By electing to do so, CAS will not honor the subsequent SSO session
and will not generate the TGC that is designed to do so.

...
<input id="publicWorkstation"
 name="publicWorkstation"
 value="false" tabindex="4"
 type="checkbox" />
<label for="publicWorkstation" th:utext="#{screen.welcome.label.publicstation}"/>
...

Default Service

In the event that no service is submitted to CAS, you may specify a default
service url to which CAS will redirect. Note that this default service, much like
all other services, MUST be authorized and registered with CAS.

To see the relevant list of CAS properties, please review this guide.

 Digest Authentication

layout: default
title: CAS - Digest Authentication

Digest Authentication

Digest authentication is one of the agreed-upon methods CAS can use to negotiate credentials with a user’s
web browser. This can be used to confirm the identity of a user before sending sensitive information.
It applies a hash function to the username and password before sending them over the network.
Technically, digest authentication is an application of MD5 cryptographic
hashing with usage of nonce values to prevent replay attacks. It uses the HTTP protocol.

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-digest-authentication</artifactId>
 <version>${cas.version}</version>
</dependency>

For additional information on how digest authentication works,
please review this guide [https://en.wikipedia.org/wiki/Digest_access_authentication].

Configuration

To see the relevant list of CAS properties, please review this guide.

Credential Management

By default, CAS attempts to cross-check computed hash values against what the client reports in the authentication request.
In order for this to succeed, CAS will need access to the data store where MD5 representations of credentials are kept. The store
needs to keep the hash value at a minimum of course.

By default, CAS uses its properties file to house the hashed credentials. Real production-level deployments
of this module will need to provide their own data store that provides a collection of hashed values as authenticating accounts.

Client Requests

The following snippets demonstrate how a given Java client may use CAS digest authentication,
via Apache’s HttpClient library:

final HttpHost target = new HttpHost("localhost", 8080, "http");

final CredentialsProvider credsProvider = new BasicCredentialsProvider();
credsProvider.setCredentials(
 new AuthScope(target.getHostName(), target.getPort()),
 new UsernamePasswordCredentials("casuser", "Mellon"));

final CloseableHttpClient httpclient = HttpClients.custom()
 .setDefaultCredentialsProvider(credsProvider)
 .build();

try {
 HttpGet httpget = new HttpGet("http://localhost:8080/cas/login");

 // Create AuthCache instance
 final AuthCache authCache = new BasicAuthCache();

 // Generate DIGEST scheme object, initialize it and add it to the local auth cache
 final DigestScheme digestAuth = new DigestScheme();
 digestAuth.overrideParamter("realm", "CAS");
 authCache.put(target, digestAuth);

 // Add AuthCache to the execution context
 final HttpClientContext localContext = HttpClientContext.create();
 localContext.setAuthCache(authCache);

 System.out.println("Executing request " + httpget.getRequestLine() + " to target " + target);
 try (CloseableHttpResponse response = httpclient.execute(target, httpget, localContext)) {
 System.out.println(response.getStatusLine());
 System.out.println(EntityUtils.toString(response.getEntity()));
 }
} finally {
 httpclient.close();
}

 Logging

layout: default
title: CAS - Logging Configuration

Logging

CAS provides a logging facility that logs important informational events like authentication success and
failure; it can be customized to produce additional information for troubleshooting. CAS uses the Slf4J
Logging framework as a facade for the Log4J engine [http://logging.apache.org] by default.

The default log4j configuration file is located in src/main/resources/log4j2.xml.
By default logging is set to INFO for all functionality related to org.apereo.cas code.
For debugging and diagnostic purposes you may want to set these levels to DEBUG.

ProductionYou should always run everything under
WARN. In production
warnings and errors are things you care about. Everything else is just diagnostics. Only
turn up DEBUG or INFO if you need to research a particular issue.

Configuration

It is often time helpful to externalize the log4j2.xml file to a system path to preserve settings between upgrades.
The location of log4j2.xml file by default is on the runtime classpath and can be controlled
via the CAS properties. To see the relevant list of CAS properties, please review this guide.

Monitoring LogsTo review log settings and output,
 you may also use the CAS administration panels.

Log Levels

While log levels can directly be massaged via the native log4j2.xml syntax, they may also be modified
using the usual CAS properties. To see the relevant list of CAS properties, please review this guide.

Refresh Interval

The log4j2.xml itself controls the refresh interval of the logging configuration. Log4j has the ability
to automatically detect changes to the configuration file and reconfigure itself. If the monitorInterval
attribute is specified on the configuration element and is set to a non-zero value then the file will be
checked the next time a log event is evaluated and/or logged and the monitorInterval has elapsed since
the last check. This will allow you to adjust the log levels and configuration without restarting the
server environment.

<!-- Specify the refresh internal in seconds. -->
<Configuration monitorInterval="15" ...>
 ...
</Configuration>

Log Patterns

By default most appenders that are provided via the log4j2.xml file use
pattern-based layouts to format log messages. The following alternative layouts may also be used:

| Layout | Description
|——————————-|————————————————————————
| CsvParameterLayout | Converts an event’s parameters into a CSV record, ignoring the message.
| GelfLayout | Lays out events in the Graylog Extended Log Format (GELF).
| HTMLLayout | Generates an HTML page and adds each LogEvent to a row in a table
| JSONLayout | Creates log events in well-formed or fragmented JSON.
| PatternLayout | Formats the log even based on a conversion pattern.
| RFC5424Layout | Formats log events in accordance with RFC 5424 [http://tools.ietf.org/html/rfc5424], the enhanced Syslog specification.
| SerializedLayout | Log events are transformed into byte arrays useful in JMS or socket connections.
| SyslogLayout | Formats log events as BSD Syslog records.
| XMLLayout | Creates log events in well-formed or fragmented XML.
| YamlLayout | Creates log events in YAML.

To learn more about nuances and configuration settings for each, please refer to the official Log4J guides [http://logging.apache.org].

Log File Rotation

The default configuration specifies triggering policies for rolling over logs, at startup, size or at specific times. These policies apply to RollingFile appenders.

For example, the following XML fragment defines policies that rollover the log when the JVM starts, when the log size reaches 10 megabytes, and when the current date no longer matches the log’s start date.

<RollingFile name="file" fileName="${baseDir}/cas.log" append="true"
 filePattern="${baseDir}/cas-%d{yyyy-MM-dd-HH}-%i.log">
 ...
 <Policies>
 <OnStartupTriggeringPolicy />
 <SizeBasedTriggeringPolicy size="10 MB"/>
 <TimeBasedTriggeringPolicy />
 </Policies>
 ...
</RollingFile>

The triggering policies determines if a rollover should be performed and rollover strategy can also be design to indicate how that should be done. If no strategy is configured, the default will be used.

To find more a comprehensive documentation, please review the guides here [http://logging.apache.org].

Rollover Strategy

Customized rollover strategies provide a delete action that gives users more control over what files are deleted at rollover time than what was possible with the DefaultRolloverStrategy max attribute. The delete action lets users configure one or more conditions that select the files to delete relative to a base directory.

For example, the following appender at rollover time deletes all files under the base directory that match the */*.log glob and are 7 days old or older.

<RollingFile name="file" fileName="${baseDir}/cas.log" append="true"
 filePattern="${baseDir}/cas-%d{yyyy-MM-dd-HH}-%i.log">
 ...
 <DefaultRolloverStrategy max="5">
 <Delete basePath="${baseDir}" maxDepth="2">
 <IfFileName glob="*/*.log" />
 <IfLastModified age="7d" />
 </Delete>
 </DefaultRolloverStrategy>
 ...
</RollingFile>

To find more a comprehensive documentation, please review the guides here [http://logging.apache.org].

Log Data Sanitation

For security purposes, CAS by default will attempt to remove TGT and PGT ids from all log data.
This will of course include messages that are routed to a log destination by the logging framework as
well as all audit messages. A sample follows below:

WHO: audit:unknown
WHAT: TGT-******************123456-cas01.example.org
ACTION: TICKET_GRANTING_TICKET_DESTROYED
APPLICATION: CAS
WHEN: Sat Jul 12 04:10:35 PDT 2014
CLIENT IP ADDRESS: ...
SERVER IP ADDRESS: ...

Certain number of characters are left at the trailing end of the ticket id to assist with
troubleshooting and diagnostics.

To see the relevant list of CAS properties, please review this guide.

Routing Logs to Sentry

Log data can be automatically routed to and integrated with Sentry to track and monitor CAS events and errors.

Routing Logs to Papertrail

Papertrail [https://papertrailapp.com] is a cloud-based log management service that provides aggregated logging tools,
flexible system groups, team-wide access, long-term archives, charts and analytics exports, monitoring webhooks and more.

See this guide [http://help.papertrailapp.com/kb/configuration/java-log4j-logging/#log4j2] for more info.

...
<Appenders>
 <Syslog name="Papertrail"
 host="<host>.papertrailapp.com"
 port="XXXXX"
 protocol="TCP" appName="MyApp" mdcId="mdc"
 facility="LOCAL0" enterpriseNumber="18060" newLine="true"
 format="RFC5424" ignoreExceptions="false" exceptionPattern="%throwable{full}">
 </Syslog>
</Appenders>
...
<Loggers>
 <Root level="INFO">
 <AppenderRef ref="Papertrail" />
 </Root>
</Loggers>

Routing Logs to Loggly

Loggly [https://www.loggly.com] is a cloud-based log management service that makes it easy to access and analyze the mission-critical information within your logs.
Log data can be automatically routed to Loggly via Rsyslog. The advantage of using Rsyslog is that it can send TCP events without blocking your application, can optionally encrypt the data, and even queue data to add robustness to network failure.

See this guide [https://www.loggly.com/docs/java-log4j-2/] for more info.

...
<Appenders>
 <Socket name="Loggly" host="localhost" port="514" protocol="UDP">
 <PatternLayout>
 <pattern>${hostName} java %d{yyyy-MM-dd HH:mm:ss,SSS}{GMT} %p %t
 %c %M - %m%n</pattern>
 </PatternLayout>
 </Socket>
</Appenders>
...
<Loggers>
 <Root level="INFO">
 <AppenderRef ref="Loggly" />
 </Root>
</Loggers>

Routing Logs to CloudWatch

Log data can be automatically routed to AWS CloudWatch [https://aws.amazon.com/cloudwatch/]. Support is enabled by including the following module in the overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-core-logging-config-cloudwatch</artifactId>
 <version>${cas.version}</version>
</dependency>

With the above module, you may then declare a specific appender to communicate with AWS CloudWatch:

<CloudWatchAppender name="cloudWatch"
 awsLogGroupName="LogGroupName"
 awsLogStreamName="LogStreamName"
 awsLogRegionName="us-west-1"
 credentialAccessKey="..."
 credentialSecretKey="..."
 awsLogStreamFlushPeriodInSeconds="5">
 <PatternLayout>
 <Pattern>%5p | %d{ISO8601}{UTC} | %t | %C | %M:%L | %m %ex %n</Pattern>
 </PatternLayout>
</CloudWatchAppender>
...
<AsyncLogger name="org.apereo" additivity="true" level="debug">
 <appender-ref ref="cloudWatch" />
</AsyncLogger>

The AWS credentials for access key, secret key and region, if left undefined, may also be retrieved from
system properties via AWS_ACCESS_KEY, AWS_SECRET_KEY and AWS_REGION_NAME.
The group name as well as the stream name are automatically created by CAS, if they are not already found.

Routing Logs to Logstash

CAS logging framework has the ability route log messages to a TCP/UDP endpoint.
This configuration assumes that the Logstash server has enabled its TCP input [https://www.elastic.co/guide/en/logstash/current/plugins-inputs-tcp.html] on port 9500:

...
<Appenders>
 <Socket name="socket" host="localhost" connectTimeoutMillis="3000"
 port="9500" protocol="TCP" ignoreExceptions="false">
 <SerializedLayout />
 </Socket>
</Appenders>
...
<AsyncLogger name="org.apereo" additivity="true" level="debug">
 <appender-ref ref="cas" />
 <appender-ref ref="socket" />
</AsyncLogger>

Routing Logs to SysLog

CAS logging framework does have the ability to route messages to an external
syslog instance. To configure this,
you first to configure the SysLogAppender and then specify which
messages needs to be routed over to this instance:

...
<Appenders>
 <Syslog name="SYSLOG" format="RFC5424" host="localhost" port="8514"
 protocol="TCP" appName="MyApp" includeMDC="true"
 facility="LOCAL0" enterpriseNumber="18060" newLine="true"
 messageId="Audit" id="App"/>
</Appenders>
...
<AsyncLogger name="org.apereo" additivity="true" level="debug">
 <appender-ref ref="cas" />
 <appender-ref ref="SYSLOG" />
</AsyncLogger>

You can also configure the remote destination output over
SSL and specify the related keystore configuration:

...

<Appenders>
 <TLSSyslog name="bsd" host="localhost" port="6514">
 <SSL>
 <KeyStore location="log4j2-keystore.jks" password="changeme"/>
 <TrustStore location="truststore.jks" password="changeme"/>
 </SSL>
 </TLSSyslog>
</Appenders>

...

Mapped Diagnostic Context

To uniquely stamp each request, CAS puts contextual
information into the MDC, the abbreviation of Mapped Diagnostic Context. This effectively
translates to a number of special variables available to the logging context that
may convey additional information about the nature of the request or the authentication event.

| Variable | Description
|———————————–|————————————-
| remoteAddress | Remote address of the HTTP request.
| remoteUser | Remote user of the HTTP request.
| serverName | Server name of the HTTP request.
| serverPort | Server port of the HTTP request.
| locale | Locale of the HTTP request.
| contentType | Content type of the HTTP request.
| contextPath | Context path of the HTTP request.
| localAddress | Local address of the HTTP request.
| localPort | Local port of the HTTP request.
| remotePort | Remote port of the HTTP request.
| pathInfo | Path information of the HTTP request.
| protocol | Protocol of the HTTP request.
| authType | Authentication type of the HTTP request.
| method | Method of the HTTP request.
| queryString | Query string of the HTTP request.
| requestUri | Request URI of the HTTP request.
| scheme | Scheme of the HTTP request.
| timezone | Timezone of the HTTP request.
| principal | CAS authenticated principal id.

Additionally, all available request attributes and parameters are exposed as variables.

The above variables may be used in logging patterns:

	Use %X by itself to include all variables.

	Use %X{key} to include the specified variable.

<Console name="console" target="SYSTEM_OUT">
 <PatternLayout pattern="%X{locale} %d %p [%c] - <%m>%n"/>
</Console>

 Proxy Authentication

layout: default
title: CAS - Proxy Authentication

Proxy Authentication

Proxy authentication support for CAS v1+ protocols is enabled by default, thus it is entirely a matter of CAS
client configuration to leverage proxy authentication features.

Service Configuration
Note that each registered application in the registry must explicitly be configured
to allow for proxy authentication. See this guide
to learn about registering services in the registry.

Disabling proxy authentication components is recommended for deployments that wish to strategically avoid proxy
authentication as a matter of security policy.

Use Case

One of the more common use cases of proxy authentication is the ability to obtain a ticket for
a back-end [REST-based] service that is also protected by CAS. The scenario usually is:

	User is faced with application A which is protected by CAS.

	Application A on the backend needs to contact a service S to produce data.

	Service S itself is protected by CAS itself.

Because A contacts service S via a server-to-service method where no browser is involved,
service S would not be able to recognize that an SSO session already exists. In these cases,
application A needs to exercise proxying in order to obtain a proxy ticket for service S. The proxy ticket
is passed to the relevant endpoint of service S so it can retrieve and validate it via CAS
and finally produce a response.

The trace route may look like this:

	Browser navigates to A.

	A redirects to CAS.

	CAS authenticates and redirects back to A with an ST.

	A attempts to validate the ST, and asks for a PGT.

	CAS confirms ST validation, and issues a proxy-granting ticket PGT.

	A asks CAS to produce a PT for service S, supplying the PGT in its request.

	CAS produces a PT for service S.

	A contacts the service S endpoint, passing along PT in the request.

	Service S attempts to validate the PT via CAS.

	CAS validates the PT and produces a successful response.

	Service S receives the response, and produces data for A.

	A receives and displays the data in the browser.

See the CAS Protocol for more info.

Handling SSL-enabled Proxy URLs

By default, CAS ships with a bundled HTTP client that is partly responsible to callback the URL
for proxy authentication. Note that this URL need also be authorized by the CAS service registry
before the callback can be made. See this guide for more info.

If the callback URL is authorized by the service registry, and if the endpoint is under HTTPS
and protected by an SSL certificate, CAS will also attempt to verify the validity of the endpoint’s
certificate before it can establish a successful connection. If the certificate is invalid, expired,
missing a step in its chain, self-signed or otherwise, CAS will fail to execute the callback.

The HTTP client of CAS does present a local trust store that is similar to that of the Java platform.
It is recommended that this trust store be used to handle the management of all certificates that need
to be imported into the platform to allow CAS to execute the callback URL successfully. While by default,
the local trust store to CAS is empty, CAS will still utilize both the default and the local trust store.
The local trust store should only be used for CAS-related functionality of course, and the trust store file
can be carried over across CAS and Java upgrades, and certainly managed by the source control system that should
host all CAS configuration.

To see the relevant list of CAS properties, please review this guide.

PGT in Validation Response

In situations where using CAS20ProxyHandler may be undesirable, such that invoking a callback url to receive the proxy granting ticket is not feasible,
CAS may be configured to return the proxy-granting ticket id directly in the validation response. In order to successfully establish trust between the
CAS server and the application, private/public key pairs are generated by the client application and then the public key distributed and
configured inside CAS. CAS will use the public key to encrypt the proxy granting ticket id and will issue a new attribute <proxyGrantingTicketId>
in the validation response, only if the service is authorized to receive it.

Note that the return of the proxy granting ticket id is only carried out by the CAS validation response, provided the client
application issues a request to the /p3/serviceValidate endpoint (or /p3/proxyValidate). Other means of returning attributes to CAS, such as SAML1
will not support the additional returning of the proxy granting ticket.

Register Service

Once you have received the public key from the client application owner, it must be first
registered inside the CAS server’s service registry. The service that holds the public key above must also
be authorized to receive the PGT
as an attribute for the given attribute release policy of choice.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "^https://.+",
 "name" : "test",
 "id" : 1,
 "evaluationOrder" : 0,
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllowedAttributeReleasePolicy",
 "authorizedToReleaseCredentialPassword" : false,
 "authorizedToReleaseProxyGrantingTicket" : true
 },
 "publicKey" : {
 "@class" : "org.apereo.cas.services.RegisteredServicePublicKeyImpl",
 "location" : "classpath:RSA1024Public.key",
 "algorithm" : "RSA"
 }
}

Decrypt PGT

Once the client application has received the proxyGrantingTicket id attribute in the CAS validation response, it can decrypt it
via its own private key. Since the attribute is base64 encoded by default, it needs to be decoded first before
decryption can occur. Here’s a sample code snippet:

final Map<?, ?> attributes = ...
final String encodedPgt = (String) attributes.get("proxyGrantingTicket");
final PrivateKey privateKey = ...
final Cipher cipher = Cipher.getInstance(privateKey.getAlgorithm());
final byte[] cred64 = decodeBase64(encodedPgt);
cipher.init(Cipher.DECRYPT_MODE, privateKey);
final byte[] cipherData = cipher.doFinal(cred64);
return new String(cipherData);

 JAAS Authentication

layout: default
title: CAS - JAAS Authentication

JAAS Authentication

JAAS [http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html] is a Java standard
authentication and authorization API. JAAS is configured via externalized plain text configuration file.
Using JAAS with CAS allows modification of the authentication process without having to rebuild and redeploy CAS
and allows for PAM-style multi-module “stacked” authentication.

Configuration

JAAS components are provided in the CAS core module and require no additional dependencies to use.
The JAAS handler delegates to the built-in JAAS subsystem to perform authentication according to the
directives in the JAAS config file.

To see the relevant list of CAS properties, please review this guide.

JAAS Configuration File

The default JAAS configuration file is located at $JRE_HOME/lib/security/java.security. It’s important to note
that JAAS configuration applies to the entire JVM. The path to the JAAS configuration file in effect may be altered
by setting the java.security.auth.login.config system property to an alternate file path.
A sample JAAS configuration file is provided for reference.

/**
 * Login Configuration for JAAS. First try Kerberos, then LDAP, then AD
 * Note that a valid krb5.conf must be supplied to the JVM for Kerberos auth
 * -Djava.security.krb5.conf=/etc/krb5.conf
 */
CAS {
 com.ibm.security.auth.module.Krb5LoginModule sufficient
 debug=FALSE;
 edu.uconn.netid.jaas.LDAPLoginModule sufficient
 java.naming.provider.url="ldap://ldap.my.org:389/dc=my,dc=org"
 java.naming.security.principal="uid=cas,dc=my,dc=org"
 java.naming.security.credentials="password"
 Attribute="uid"
 startTLS="true";
 edu.uconn.netid.jaas.LDAPLoginModule sufficient
 java.naming.provider.url="ldaps://ad.my.org:636/dc=ad,dc=my,dc=org"
 java.naming.security.principal="cas@ad.my.org"
 java.naming.security.credentials="password"
 Attribute="sAMAccountName";
};

 JWT Authentication

layout: default
title: CAS - JWT Authentication

JWT Authentication

JSON Web Tokens [http://jwt.io/] are an open, industry standard RFC 7519 method for representing claims securely between two parties.
CAS provides support for token-based authentication on top of JWT, where an authentication request can be granted an SSO session based
on a form of credentials that are JWTs.

JWT Service Tickets

CAS may also be allowed to fully create signed/encrypted JWTs and pass them back to the application in form of service tickets.
In this case, JWTs are entirely self-contained and contain the authenticated principal as well as all authorized attributes
in form of JWT claims. To learn more about this functionality, please review this guide.

Overview

CAS expects a token parameter (or request header) to be passed along to the /login endpoint. The parameter value must be a JWT.

JCE RequirementIt's safe to make sure you have the proper JCE bundle installed in your Java environment that is used by CAS, specially if you need to use specific signing/encryption algorithms and methods. Be sure to pick the right version of the JCE for your Java version. Java versions can be detected via the java -version command.

Here is an example of how to generate a JWT via Pac4j [https://github.com/pac4j/pac4j]:

final String signingSecret = RandomStringUtils.randomAlphanumeric(256);
final String encryptionSecret = RandomStringUtils.randomAlphanumeric(48);

System.out.println("signingSecret " + signingSecret);
System.out.println("encryptionSecret " + encryptionSecret);

final JwtGenerator<CommonProfile> g = new JwtGenerator<>();
g.setSignatureConfiguration(new SecretSignatureConfiguration(signingSecret, JWSAlgorithm.HS256));
g.setEncryptionConfiguration(new SecretEncryptionConfiguration(encryptionSecret,
 JWEAlgorithm.DIR, EncryptionMethod.A192CBC_HS384));

final CommonProfile profile = new CommonProfile();
profile.setId("casuser");
final String token = g.generate(profile);
System.out.println("token: " + token);

Once the token is generated, you may pass it to the /login endpoint of CAS as such:

/cas/login?service=https://...&token=<TOKEN_VALUE>

Configuration

JWT authentication support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-token-webflow</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Configure the appropriate service in your service registry to hold the secrets:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "https://.+",
 "name" : "testId",
 "id" : 1,
 "properties" : {
 "@class" : "java.util.HashMap",
 "jwtSigningSecret" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceProperty",
 "values" : ["java.util.HashSet", ["<SECRET>"]]
 },
 "jwtEncryptionSecret" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceProperty",
 "values" : ["java.util.HashSet", ["<SECRET>"]]
 },
 "jwtSigningSecretAlg" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceProperty",
 "values" : ["java.util.HashSet", ["HS256"]]
 },
 "jwtEncryptionSecretAlg" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceProperty",
 "values" : ["java.util.HashSet", ["dir"]]
 },
 "jwtEncryptionSecretMethod" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceProperty",
 "values" : ["java.util.HashSet", ["A192CBC-HS384"]]
 }
 }
}

Note that the only required property is jwtSigningSecret.

 Multifactor Authentication Trusted Device/Browser

layout: default
title: CAS - Trusted Device Multifactor Authentication

Multifactor Authentication Trusted Device/Browser

In addition to triggers that are provided by the MFA functionality of CAS, there may be
cases where you wish to let the user decide if the current browser/device should be trusted so as to skip subsequent MFA requests. The
objective is for CAS to remember that decision for a configurable period of time and not bother the user with MFA until the decision
is either forcefully revoked or considered expired.

Trusting a device during an MFA workflow would mean that the ultimate decision is remembered for that user of that location
of that device. These keys are combined together securely and assigned to the final decision.

Before deployment, you should consider the following:

	Should users be optionally allowed to authorize the “current” device?

	...or must that happen automatically once MFA is commenced?

	How should user decisions and choices be remembered? Where are they stored?

	How long should user decisions be trusted by CAS?

	How is a trusted authentication session communicated back to an application?

Note that enabling this feature by default means it’s globally applied to all in the case if you have multiple MFA providers turned on.
This can be optionally disabled and applied only to a selected set of providers.

Configuration

Support is provided via the following module:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-trusted-mfa</artifactId>
 <version>${cas.version}</version>
</dependency>

Settings

To see the relevant list of CAS properties, please review this guide.

Authentication Context

If an MFA request is bypassed due to a trusted authentication decision, applications will receive a special attribute as part of
the validation payload that indicates this behavior. Applications must further account for the scenario where they ask for an MFA
mode and yet don’t receive confirmation of it in the response given the authentication session was trusted and MFA bypassed.

Storage

User decisions must be remembered and processed later on subsequent requests.

Default

If you do nothing, by default records are kept inside the runtime memory and cached for a configurable amount of time.
This is most useful if you have a very small deployment with a small user base or if you simply wish to demo the functionality.

JDBC

User decisions may also be kept inside a regular RDBMS of your own choosing.

Support is provided via the following module:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-trusted-mfa-jdbc</artifactId>
 <version>${cas.version}</version>
</dependency>

To learn how to configure database drivers, please see this guide.
To see the relevant list of CAS properties, please review this guide.

Mongo

User decisions may also be kept inside a MongoDb instance.

Support is provided via the following module:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-trusted-mfa-mongo</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

REST

If you wish to completely delegate the management, verification and persistence of user decisions, you may design a REST API
which CAS shall contact to verify user decisions and remember those for later.

Support is provided via the following module:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-trusted-mfa-rest</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Retrieve Trusted Records

A GET request that returns all trusted authentication records that are valid and not-expired.

curl -i -H "Accept: application/json" -H "Content-Type: application/json" -X GET ${endpointUrl}/[principal]

Response payload may produce a collection of objects that contain:

[
 {
 "principal": "casuser",
 "geography": "...",
 "date": "YYYY-MM-dd",
 "name": "Office",
 "key": "..."
 }
]

Store Trusted Records

A POST request that stores a newly trusted device record.

curl -H "Content-Type: application/json" -X POST -d '${json}' ${endpointUrl}

POST data will match the following block:

{
 "principal": "...",
 "geography": "...",
 "date": "...",
 "name": "...",
 "key": "..."
}

Response payload shall produce a 200 http status code to indicate a successful operation.

 Configure Service Custom Properties

layout: default
title: CAS - Configuring Service Custom Properties

Configure Service Custom Properties

CAS has ability to add arbitrary attributes to a registered service.
These attributes are considered extra metadata about the service that
indicate settings such as contact phone number, email, etc or
extra attributes and fields that may be used by extensions
for custom functionality on a per-service basis.

A sample JSON file follows:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "^https://.+",
 "name" : "sample service",
 "id" : 100,
 "properties" : {
 "@class" : "java.util.HashMap",
 "email" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceProperty",
 "values" : ["java.util.HashSet", ["person@place.edu", "admin@place.edu"]]
 }
 }
}

 Reloading Changes

layout: default
title: CAS - Configuration Management - Reloading Changes

Reloading Changes

The CAS spring cloud configuration server is able to consume properties and settings
via the profiles outlined here. The server is constantly monitoring
changes to the underlying property sources automatically, but has no way to broadcast those changes
to its own clients, such as the CAS server itself, which would act as a client of the configuration
server expecting change notifications to quietly reload its configuration.

Therefor, in order to broadcast such change events CAS
presents various endpoints that allow the adopter
to refresh the configuration as needed. This means that an adopter would simply
change a required CAS settings and then would submit
a request to CAS to refresh its current state. All CAS internal components that are affected
by the external change are quietly reloaded
and the setting takes immediate effect, completely removing the need for container restarts or CAS redeployments.

Do Not Discriminate!Most if not all CAS settings are eligible candidates
for reloads. CAS should be smart enough to reload the appropriate configuration, regardless of setting/module that
ends up using that setting. All is fair game, as the entire CAS web application inclusive of all modules and all
relevant settings may be completely and utterly reloadable. If you find an instance where this statement does not hold, please speak up.

To see the relevant list of CAS properties, please review this guide.

Reload Strategy

CAS uses Spring Cloud [https://github.com/spring-cloud/spring-cloud-config]
to manage the internal state of the configuration. The configuration server that
is provided by Spring Cloud embedded in CAS is constantly monitoring sources
that house CAS settings and upon changes will auto-refresh itself.

Standalone

In the event that the standalone configuration profile
is used to control and direct settings and Spring Cloud configuration server is disabled,
CAS will begin to automatically watch and monitor the configuration files indicated by the profile and will auto-reload the state of the runtime
application context automatically. You may also attempt to refresh settings manually
via the CAS admin screens.

Spring Cloud

Any changes you make to the externally-defined [application|cas].[properties|yml] file
MUST be refreshed manually.
If you are using the CAS admin screens to update and edit properties,
the configuration state of the CAS server is refreshed seamlessly and automatically
without your resorting to manual and forceful refresh.

Clients of the configuration server (i.e. CAS server web application) do also expose a /refresh endpoint
that allow one to refresh the configuration based on the current state of the configuration server and reconfigure
the application runtime without the need to restart the JVM.

curl -X POST https://cas.server.url/cas/status/refresh

See this guide to learn more about various monitoring endpoints, etc.

 LDAP Authentication

layout: default
title: CAS - LDAP Authentication

LDAP Authentication

LDAP integration is enabled by including the following dependency in the overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-ldap</artifactId>
 <version>${cas.version}</version>
</dependency>

Configuration

To see the relevant list of CAS properties, please review this guide.

Password Policy Enforcement

To learn how to enforce a password policy for LDAP, please review this guide.

Troubleshooting

To enable additional logging, modify the logging configuration file to add the following:

<AsyncLogger name="org.ldaptive" level="debug" additivity="false">
 <AppenderRef ref="console"/>
 <AppenderRef ref="file"/>
</AsyncLogger>

 Throttling Authentication Attempts

layout: default
title: CAS - Configuring Authentication Throttling

Throttling Authentication Attempts

CAS provides a facility for limiting failed login attempts to support password guessing and related abuse scenarios.
A couple strategies are provided for tracking failed attempts:

	Source IP - Limit successive failed logins against any username from the same IP address.

	Source IP and username - Limit successive failed logins against a particular user from the same IP address.

It would be straightforward to develop new components that implement alternative strategies.

All login throttling components that ship with CAS limit successive failed login attempts that exceed a threshold
rate in failures per second. The following properties are provided to define the failure rate.

	failureRangeInSeconds - Period of time in seconds during which the threshold applies.

	failureThreshold - Number of failed login attempts permitted in the above period.

A failure rate of more than 1 per 3 seconds is indicative of an automated authentication attempt, which is a
reasonable basis for throttling policy. Regardless of policy care should be taken to weigh security against access;
overly restrictive policies may prevent legitimate authentication attempts.

IP Address

Uses a memory map to prevent successive failed login attempts from the same IP address.

IP Address and Username

Uses a memory map to prevent successive failed login attempts for
a particular username from the same IP address.

Inspektr + JDBC

Queries the data source used by the CAS audit facility to prevent successive failed login attempts for a particular
username from the same IP address. This component requires that the
inspektr library [https://github.com/apereo/inspektr] used for CAS auditing be configured with
JdbcAuditTrailManager, which writes audit data to a database.

Enable the following module in your configuration overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-throttle-jdbc</artifactId>
 <version>${cas.version}</version>
</dependency>

For additional instructions on how to configure auditing via Inspektr,
please review the following guide.

Configuration

To see the relevant list of CAS properties, please review this guide.

High Availability Considerations for Throttling

All of the throttling components are suitable for a CAS deployment that satisfies the
recommended HA architecture. In particular deployments with multiple CAS
nodes behind a load balancer configured with session affinity can use either in-memory or inspektr components. It is
instructive to discuss the rationale. Since load balancer session affinity is determined by source IP address, which
is the same criterion by which throttle policy is applied, an attacker from a fixed location should be bound to the
same CAS server node for successive authentication attempts. A distributed attack, on the other hand, where successive
request would be routed indeterminately, would cause haphazard tracking for in-memory CAS components since attempts
would be split across N systems. However, since the source varies, accurate accounting would be pointless since the
throttling components themselves assume a constant source IP for tracking purposes. The login throttling components
are simply not sufficient for detecting or preventing a distributed password brute force attack.

For stateless CAS clusters where there is no session affinity, the in-memory
components may afford some protection but
they cannot apply the rate strictly since requests to CAS hosts would be split across N systems.
The inspektr components, on the other hand, fully support stateless clusters.

 Risk-based Authentication

layout: default
title: CAS - Adaptive Risk-based Authentication

Risk-based Authentication

Risk-based authentication allows CAS to detect suspicious and seemingly-fraudulent authentication requests based on past user behavior
and collected authentication events, statistics, etc. Once and after primary authentication where the principal is identified,
the authentication transaction is analyzed via a number of configurable criteria and fences to determine how risky the attempt may be.
The result of the evaluation step is a cumulative risk score that is then weighed against a risk threshold set by the CAS operator.
In the event that the authentication attempt is considered risky well beyond the risk threshold, CAS may be allowed to take action and
mitigate that risk.

Simply put, the story told is:

If an authentication request is at least [X%] risky, take action to mitigate that risk.

The functionality of this feature is ENTIRELY dependent upon collected statistics and authentication events in the past.
Without data, there is nothing to analyze and no risk to detect.

Note that evaluation of attempts and mitigation of risks are all recorded in the audit log.

Adaptive Authentication
If you need to preemptively evaluate authentication attempts based on various characteristics of the request,
you may be interested in this guide instead.

Risk Calculation

One or more risk calculators may be enabled to allow an analysis of authentication requests.

A high-level explanation of the risk calculation strategy follows:

	If there is no recorded event at all present for the principal, consider the request suspicious.

	If the number of recorded events for the principal based on the active criteria matches the total number of events, consider the
request safe.

IP Address

This calculator looks into past authentication events that match the client ip address. It is applicable if you wish
to consider authentication requests from unknown ip addresses suspicious for the user. The story here is:

Find all past authentication events that match the current client ip address and calculate an averaged score.

Browser User Agent

This calculator looks into past authentication events that match the client’s user-agent string. It is applicable if you wish
to consider authentication requests from unknown browsers suspicious for the user. The story here is:

Find all past authentication events that match the current client browser and calculate an averaged score.

Geolocation

This calculator looks into past authentication events that contain geolocation data, and compares those with the current geolocation.
If current geolocation data is unavailable, it will attempt to geocode the location based on the current client ip address. This feature
mostly depends on whether or not geodata is made available to CAS via the client browser. The story here is:

Find all past authentication events that match the current client location and calculate an average score.

Date/Time

This calculator looks into past authentication events that fit within the defined time-window. It is applicable if you wish
to consider authentication requests outside that window suspicious for the user. The story here is:

Find all past authentication events that are established X hours before/after now and calculate an averaged score.

Risk Mitigation

Once an authentication attempt is deemed risky, a contingency plan may be enabled to mitigate risk. If configured and allowed,
CAS may notify both the principal and deployer via both email and sms.

Block Authentication

Prevent the authentication flow to proceed and disallow the establishment of the SSO session.

Multifactor Authentication

Force the authentication event into a multifactor flow of choice,
identified by the provider id.

Configuration

Support is enabled by including the following dependency in the overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-electrofence</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

SMS Messaging

Users may be notified of risky authentication attempts via text messages and/or email.
To learn more about available options, please see this guide
or this guide.

Remember

	You MUST allow and configure CAS to track and record authentication events.

	You MUST allow and configure CAS to geolocate authentication requests.

	If the selected contingency plan is to force the user into a multifactor authentication flow, you then MUST configure CAS for
multifactor authentication and the relevant provider.

 GeoTracking Authentication Requests

layout: default
title: CAS - GeoTracking Authentication Requests

GeoTracking Authentication Requests

Authentication requests can be mapped and translated to physical locations.

Google Maps

Uses the Google Maps Geocoding API [https://developers.google.com/maps/documentation/geocoding/start] to translate
authentication requests into a geo-location.

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-geolocation-googlemaps</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Maxmind

Uses Maxmind [https://www.maxmind.com/en/home] to translate
authentication requests into a geo-location.

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-geolocation-maxmind</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

 Localization

layout: default
title: CAS - User Interface Customization

Localization

The CAS Web application includes a number of localized message files:

	English (US)

	Spanish

	French

	Russian

	Dutch (Nederlands)

	Swedish (Svenskt)

	Italian (Italiano)

	Urdu

	Chinese (Simplified)

	German (Deutsch)

	Japanese

	Croatian

	Czech

	Slovenian

	Polish

	Portuguese (Brazil)

	Turkish

	Farsi

	Arabic

In order to “invoke” a specific language for the UI, the /login endpoint may be passed a locale parameter as such:

https://cas.server.edu/login?locale=it

Usage Warning!Note that not all languages are complete and accurate across CAS server releases as translations are entirely dependent upon community contributions.
For an accurate and complete list of localized messages, always refer to the English language bundle.

Configuration

All message bundles are marked under messages_xx.properties files at src/main/resources. The default language bundle is for the
English language and is thus called messages.properties. If there are any custom messages that need to be presented into views,
they may also be formatted under custom_messages.properties files.

In the event that the code is not found in the activated resource bundle, the code itself will be used verbatim.

To see the relevant list of CAS properties, please review this guide
and this guide.

 Shiro Authentication

layout: default
title: CAS - Shiro Authentication

Shiro Authentication

CAS support handling the authentication event via Apache Shiro [http://shiro.apache.org/].

Components

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-generic</artifactId>
 <version>${cas.version}</version>
</dependency>

Shiro Configuration

Apache Shiro supports retrieving and checking roles and permissions for an authenticated
subject. CAS exposes a modest configuration to enforce roles and permissions as part
of the authentication, so that in their absence, the authentication may fail.
While by default these settings are optional, you may configure roles and/or permissions
for the given authentication handler to check their presence and report back.

To see the relevant list of CAS properties, please review this guide.

Sample shiro.ini that needs be placed on the classpath based on the example above:

[main]
cacheManager = org.apache.shiro.cache.MemoryConstrainedCacheManager
securityManager.cacheManager = $cacheManager

[users]
casuser = Mellon, admin

[roles]
admin = system,admin,staff,superuser:*

 X.509 Authentication

layout: default
title: CAS - X.509 Authentication

X.509 Authentication

CAS X.509 authentication components provide a mechanism to authenticate users who present client certificates during
the SSL/TLS handshake process. The X.509 components require configuration outside the CAS application since the
SSL handshake happens outside the servlet layer where the CAS application resides. There is no particular requirement
on deployment architecture (i.e. Apache reverse proxy, load balancer SSL termination) other than any client
certificate presented in the SSL handshake be accessible to the servlet container as a request attribute named
javax.servlet.request.X509Certificate. This happens naturally for configurations that terminate SSL connections
directly at the servlet container and when using Apache/mod_jk; for other architectures it may be necessary to do
additional work.

Overview

Certificates are exchanged as part of the SSL (also called TLS) initialization that occurs when any browser connects to an https website.
A certain number of public CA certificates are preinstalled in each browser. It is assumed that:

	Your organization is already able to generate and distribute certificates that a user can install in their browser

	Somewhere in that certificate there is a field that contains the Principal name or can be easily mapped to the Principal name that CAS can use.

The remaining problem is to make sure that the browsers, servers and Java are all prepared to support these institutional certificates and, ideally,
that these institutional certificates will be the only ones exchanged when a browser connects to CAS.

Flow

When a browser connects to CAS over an https: URL, the server identifies itself by sending its own certificate. The browser must already have installed a certificate identifying and trusting the CA that issued the CAS Server certificate. If the browser is not already prepared to trust the CAS server, then an error message pops up saying the server is not trusted.

After the Server sends the certificate that identifies itself, it then can then send a list of names of Certificate Authorities from which it is willing to accept certificates. Ideally, this list will include only one name; the name of the internal institutional CA that issues internal intranet-only certificates that internally contain a field with the CAS Principal name.

A user may install any number of certificates into the browser from any number of CA’s. If only one of these certificates comes from a CA named in the list of acceptable CA’s sent by the server, then most browsers will automatically send that one certificate without asking, and some can be configured in to not ask when there is only one possible choice. This presents a user experience where CAS becomes transparent to the user after some initial setup and the login happens automatically. However, if the server hosting CAS sends more than one CA name in the list and that matches more than one certificate on the browser, then the user will get prompted to choose a Certificate from the list. A user interaction defeats much of the purpose of certificates in CAS.

Note that CAS does not control this exchange. It is handled by the underlying server. You may not have the control to require the server to vend only one CA name when a browser visits CAS. So if you want to use X.509 certificates in CAS, you should consider this requirement when choosing the hosting environment. The ideal situation is to select a server that can identify itself with a public certificate issued by something like VeriSign or InCommon but then require the client certificate only be issued by the internal corporate/campus authority.

When CAS gets control, a user certificate may have been presented by the browser and be stored in the request. The CAS X.509 authentication machinery examines that certificate and verifies that it was issued by the trusted institutional authority. Then CAS searches through the fields of the certificate to identify one or more fields that can be turned into the principal identifier that the applications expect.

While an institution can have one certificate authority that issues certificates to employees, clients, machines, services, and devices, it is more common for the institution to have a single “root” certificate authority that in its entire existence only issues a handful of certificates. Each of these certificates identifies a secondary Certificate Authority that issues a particular category of certificates (to students, staff, servers, etc.). It is possible to configure CAS to trust the root Authority and, implicitly, all the secondary authorities that it creates. This, however, makes CAS only as secure as the least reliable secondary Certificate Authority created by the institution. At some point in the future, some manager will buy a product that requires a new class of certificates. He will ask to create a Certificate Authority that vends these certificates to the machines running this new product. He will then turn administration of this mess over to a junior programmer or consultant. If CAS trusts any certificate issued by any Authority created by the root, it will trust a fraudulent certificate forged by someone who has acquired control of what was intended to be a special purpose, isolated CA. Therefore, it is better to configure CAS to only accept certificates from the one secondary CA specifically expected to issue credentials to individuals, instead of trusting the institutional root CA.

Configuration

X.509 support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-x509-webflow</artifactId>
 <version>${cas.version}</version>
</dependency>

The X.509 handler technically performs additional checks after the real SSL client authentication process performed
by the Web server terminating the SSL connection. Since an SSL peer may be configured to accept a wide range of
certificates, the CAS X.509 handler provides a number of properties that place additional restrictions on
acceptable client certificates.

To see the relevant list of CAS properties, please review this guide.

Web Server Configuration

X.509 configuration requires substantial configuration outside the CAS Web application. The configuration of Web
server SSL components varies dramatically with software and is outside the scope of this document. We offer some
general advice for SSL configuration:

	Configuring SSL components for optional client certificate behavior generally provides better user experience.
Requiring client certificates prevents SSL negotiation in cases where the certificate is not present, which prevents
user-friendly server-side error messages.

	Accept certificates only from trusted issuers, generally those within your PKI.

	Specify all certificates in the certificate chain(s) of allowed issuers.

Apache Tomcat

Anything said here extends the Apache Tomcat reference for SSL [https://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html].

The Tomcat server is configured in $CATALINA_HOME/conf/server.xml with one or more <Connector> elements. Each of these elements defines one port number on which Tomcat will listen for requests. Connectors that support SSL are configured with one or two files that represent a collection of X.509 certificates.

	The keystoreFile is a collection of X.509 certificates one of which Tomcat will use to identify itself to Browsers. This certificate contains the DNS name of the server on which Tomcat is running which the HTTP client will have used as the server name part of the URL. It is possible to use a file that contains multiple certificates (in which case Tomcat will use the certificate stored under the alias “Tomcat” or, if that is not found, will use the first certificate it finds that also has an associated private key). However, to assure that no mistakes are made it is sensible practice to use a file that has only the one host certificate, plus of course its private key and chain of parent Certificate Authorities.

	The truststoreFile is a collection of X.509 certificates representing Certificate Authorities from which Tomcat is willing to accept user certificates. Since the keystoreFile contains the CA that issued the certificate identifying the server, the truststoreFile and keystoreFile could be the same in a CAS configuration where the URL (actually the port) that uses X.509 authentication is not the well know widely recognized URL for interactive (userid/password form) login, and therefore the only CA that it trusts is the institutional internal CA.

One strategy if you are planning to support both X.509 and userid/password validation through the same port is to put a public (VeriSign, Thawte) certificate for this server in the keystoreFile, but then put only the institutional internal CA certificate in the truststoreFile. Logically and in all the documentation, the Certificate Authority that issues the certificate to the server which the browser trusts is completely and logically independent of the Certificate Authority that issues the certificate to the user which the server then trusts. Java keeps them separate, Tomcat keeps them separate, and browsers should not be confused if, during SSL negotiation, the server requests a user certificate from a CA other than the one that issued the server’s own identifying certificate. In this configuration, the Server issues a public certificate every browser will accept and the browser is strongly urged to send only a private institutional certificate that can be mapped to a Principal name.

Almost ThereIf you previously configured CAS without X.509 authentication, then you probably have the `keystoreFile` already configured and
loaded with a certificate identifying this server. All you need to add is the `truststoreFile` part.

The configured connector will look something like:

<!-- Define a SSL HTTP/1.1 Connector on port 443 -->
<!-- if you do not specify a truststoreFile, then the default java "cacerts" truststore will be used-->
<Connector port="443"
 maxHttpHeaderSize="8192"
 maxThreads="150"
 minSpareThreads="25"
 maxSpareThreads="75"
 enableLookups="false"
 disableUploadTimeout="true"
 acceptCount="100"
 scheme="https"
 secure="true"
 clientAuth="want"
 sslProtocol="TLS"
 keystoreFile="/path/to/keystore.jks"
 keystorePass="secret"
 truststoreFile="/path/to/myTrustStore.jks"
 truststorePass="secret" />

The clientAuth="want" tells Tomcat to request that the browser provide a user certificate if one is available. If you want to force the use of user certificates, replace "want" with "true".
If you specify "want" and the browser does not have a certificate, then CAS may forward the request to the login form.

The keystore can be in JKS or PKCS12 format when using Tomcat. When using both PKCS12 and JKS keystore types then you should specify the type of each keystore by using the keystoreType and truststoreType attributes.

You may import the certificate of the institutional Certificate Authority (the one that issues User certificates) using the command:

Create a blank keystore to start from scratch if needed
keytool -genkey -keyalg RSA -alias "selfsigned" -keystore myTrustStore.jks -storepass "secret" -validity 360
keytool -delete -alias "selfsigned" -keystore myTrustStore.jks

keytool -import -alias myAlias -keystore /path/to/myTrustStore.jks -file certificateForInstitutionalCA.crt

 Google Authenticator Authentication

layout: default
title: CAS - Google Authenticator Authentication

Google Authenticator Authentication

Google Authenticator generates 2-step verification codes on your phone. With 2-step verification signing in will require a code generated by the Google Authenticator app in addition to primary authentication. Learn more about the topic here [https://en.wikipedia.org/wiki/Google_Authenticator].

Note that the functionality presented here should also be compatible with the likes of LastPass Authenticator [https://lastpass.com/auth].

Configuration

Support is enabled by including the following module in the overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-gauth</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Token Repository

In order to prevent reuse of tokens issued, CAS will attempt to keep track of tokens that are successfully used to authenticate the user.
The repository that holds registration records and tokens is periodically scanned and cleaned up so that expired and previously used tokens
may be removed.

Registration

By default, an account registry implementation is included that collects user device registrations and saves them into memory.
Issued tokens are also captured into a self-cleaning cache to prevent token reuse for a configurable period of time.
This option should only be used for demo and testing purposes. Production deployments of this feature will require a separate
implementation of the registry that is capable to register accounts into persistent storage.

JPA

Registration records and tokens may be kept inside a database instance via the following module:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-gauth-jpa</artifactId>
 <version>${cas.version}</version>
</dependency>

To learn how to configure database drivers, please see this guide.
To see the relevant list of CAS properties, please review this guide.

MongoDb

Registration records and tokens may be kept inside a mongo db instance, via the following module:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-gauth-mongo</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

REST

Registration records may also be passed along to a REST endpoint.
The behavior is only activated when an endpoint url is provided.

| Method | Headers | Expected Response
|———–|————————————————–
| GET | username | 200. Secret key of the account in the body.
| POST | username, validationCode, secretKey, scratchCodes | 200. true/false in the body.

To see the relevant list of CAS properties, please review this guide.

JSON

Registration records may also be kept inside a single JSON file for all users.
The behavior is only activated when a path to a JSON data store file is provided,
and otherwise CAS may fallback to keeping records in memory. This feature is mostly
useful during development and for demo purposes.

To see the relevant list of CAS properties, please review this guide.

 YubiKey Authentication

layout: default
title: CAS - YubiKey Authentication

YubiKey Authentication

Yubico is a cloud-based service that enables strong, easy-to-use and affordable two-factor authentication with one-time passwords
through their flagship product, YubiKey. Once Yubico clientId and secretKey are obtained, then the configuration option
is available to use YubiKey devices as a primary authentication source that CAS server could use to authenticate users.
To configure YubiKey accounts and obtain API keys, refer to the documentation [https://upgrade.yubico.com/getapikey/].

YubiKey [https://www.yubico.com/products/yubikey-hardware] authentication components are enabled by including the
following dependencies in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-yubikey</artifactId>
 <version>${cas.version}</version>
</dependency>

Configuration

To see the relevant list of CAS properties, please review this guide.

By default, all YubiKey accounts for users are allowed to authenticate. If you wish to plug in a custom registry implementation that would determine
which users are allowed to use their YubiKey accounts for authentication, you may plug in a custom implementation of the YubiKeyAccountRegistry
that allows you to provide a mapping between usernames and YubiKey public keys.

package org.apereo.cas.support.yubikey;

@Configuration("myYubiKeyConfiguration")
@EnableConfigurationProperties(CasConfigurationProperties.class)
public class MyYubiKeyConfiguration {

 @Bean
 public YubiKeyAccountRegistry yubiKeyAccountRegistry() {
 ...
 }
}

 U2F - FIDO Universal Authentication

layout: default
title: CAS - U2F - FIDO Universal 2nd Factor Authentication

U2F - FIDO Universal Authentication

U2F is an open authentication standard that enables internet users to securely access any number of online services, with one single device, instantly and with no drivers, or client software needed. The CAS U2F implementation is built on top of Yubico [https://www.yubico.com/about/background/fido/] and the technical specifications are hosted by the open-authentication industry consortium known as the FIDO Alliance [https://fidoalliance.org/].

Note that not all browsers today support U2F. While support in recent versions of Chrome and Opera seem to exist, you should always verify [https://www.yubico.com/support/knowledge-base/categories/articles/browsers-support-u2f/] that U2F support is available for your target browser.

Support is enabled by including the following module in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-u2f</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

Registration

By default, an account registry implementation is included that collects user device registrations and saves them into memory.
This option should only be used for demo and testing purposes. Production deployments of this feature today will require a separate
implementation of the registry that is capable to register accounts into persistent storage. Additional options for storage may be added
later based on demand and availability.

 Multifactor Authentication Custom Triggers

layout: default
title: CAS - Configuring Multifactor Authentication Custom Triggers

Multifactor Authentication Custom Triggers

To create your own custom multifactor authentication trigger, you will need to design a component that is able to resolve events in the CAS authentication chain. The trigger’s (i.e. event resolver’s) job is to examine a set of conditions and requirements and provide an event id to CAS that would indicate the next step in the authentication flow.

A typical custom trigger, as an example, might be:

	Activate MFA provider identified by mfa-duo if the client browser’s IP address matches the pattern 123.+.

Note that:

	You are really not doing anything custom per se. All built-in CAS triggers behave in the same exact way when they attempt to resolve the next event.

	As you will observe below, the event resolution machinery is completely oblivious to multifactor authentication; all it cares about is finding the next event in the chain in a very generic way. Our custom implementation of course wants to have the next event deal with some form of MFA via a provider, but in theory we could have resolved the next event to be hello-world.

Requirements

You will need to have compile-time access to the following modules in the Overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-core-webflow</artifactId>
 <version>${cas.version}</version>
</dependency>

These are modules that ship with CAS by default and thou shall mark them with a compile or provided scope in your build configuration.

Design Triggers

The below example demonstrates a reasonable outline of a custom event resolver:

package org.apereo.cas.custom.mfa;

public class CustomWebflowEventResolver extends AbstractCasWebflowEventResolver {
 private static final Logger LOGGER = LoggerFactory.getLogger(CustomWebflowEventResolver.class);

 @Autowired
 private CasConfigurationProperties casProperties;

 @Override
 protected Set<Event> resolveInternal(final RequestContext context) {
 final RegisteredService service = WebUtils.getRegisteredService(context);
 final Authentication authentication = WebUtils.getAuthentication(context);
 final HttpServletRequest request = WebUtils.getHttpServletRequest(context);

 final Map<String, MultifactorAuthenticationProvider> providerMap =
 WebUtils.getAllMultifactorAuthenticationProviders(this.applicationContext);

 /*
 * Choose the provider you need from the above map (i.e. 'mfa-duo`)
 */
 final MultifactorAuthenticationProvider provider = ...

 if (yesWeDoingMfaBasedOnClientIpAddress()) {
 final Map eventAttributes = buildEventAttributeMap(authentication.getPrincipal(), service, provider));
 final Event event = validateEventIdForMatchingTransitionInContext(provider.getId(), context, eventAttributes);
 return ImmutableSet.of(event);
 }
 LOGGER.warn("Not doing MFA, sorry.");
 return null;
 }
}

Register Triggers

The event resolver trigger then needs to be registered. See this guide for better details.

The below example demonstrates a reasonable outline of a custom event resolver:

package org.apereo.cas.custom.config;

@Configuration("SomethingConfiguration")
@EnableConfigurationProperties(CasConfigurationProperties.class)
public class SomethingConfiguration {

 @Autowired
 @Qualifier("initialAuthenticationAttemptWebflowEventResolver")
 private CasDelegatingWebflowEventResolver initialEventResolver;

 @Bean
 public CasWebflowEventResolver customWebflowEventResolver() {
 return new CustomWebflowEventResolver();
 }

 @PostConstruct
 public void initialize() {
 initialEventResolver.addDelegate(customWebflowEventResolver());
 }
}

Do not forget to register the configuration class with CAS. See this guide for better details.

 Configure Proxy Authentication Policy

layout: default
title: CAS - Configuring Service Proxy Policy

Configure Proxy Authentication Policy

Each registered application in the registry may be assigned a proxy policy to determine whether the service is allowed for proxy authentication. This means that a PGT will not be issued to a service unless the proxy policy is configured to allow it. Additionally, the policy could also define which endpoint urls are in fact allowed to receive the PGT.

Note that by default, the proxy authentication is disallowed for all applications.

Usage Warning!Think VERY CAREFULLY before allowing an application to exercise proxy authentication. Blindly authorizing an application to receive a proxy-granting ticket may produce an opportunity for security leaks and attacks. Make sure you actually need to enable those features and that you understand the why. Avoid where and when you can.

Refuse

Disallows proxy authentication for a service. This is default policy and need not be configured explicitly.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "testId",
 "name" : "testId",
 "id" : 1,
 "proxyPolicy" : {
 "@class" : "org.apereo.cas.services.RefuseRegisteredServiceProxyPolicy"
 }
}

Regex

A proxy policy that only allows proxying to PGT urls that match the specified regex pattern.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "testId",
 "name" : "testId",
 "id" : 1,
 "proxyPolicy" : {
 "@class" : "org.apereo.cas.services.RegexMatchingRegisteredServiceProxyPolicy",
 "pattern" : "^https?://.*"
 }
}

 Stormpath Authentication

layout: default
title: CAS - Stormpath Authentication

Stormpath Authentication

Verify and authenticate credentials against the Stormpath [https://stormpath.com/] Cloud Identity.

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-stormpath</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties, please review this guide.

 JPA Service Registry

layout: default
title: CAS - JPA Service Registry

JPA Service Registry

Stores registered service data in a database.

Support is enabled by adding the following module into the Maven overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-jpa-service-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

To learn how to configure database drivers, please see this guide.
To see the relevant list of CAS properties, please review this guide.

Auto Initialization

Upon startup and if the services registry database is blank,
the registry is able to auto initialize itself from default
JSON service definitions available to CAS.

To see the relevant list of CAS properties, please review this guide.

 Service Discovery

layout: default
title: CAS - Service Discovery

Service Discovery

Service Discovery is one of the key tenets of a microservice based architecture. This guide aims to describe built-in CAS supported options that can be used for locating nodes for the purpose of load balancing and failover.

Eureka Server Discovery Service

Eureka [https://github.com/Netflix/eureka] is a REST-based service that is primarily
used for locating services for the purpose of load balancing and failover of middle-tier servers. Eureka provides both a discovery server and also support for clients which would be the individual CAS servers themselves in the pool. The server can be configured and deployed to be highly available, with each server replicating state about the registered services to the others.

CAS provides a Eureka-enabled service discovery server that is based on Spring Cloud Netflix [http://cloud.spring.io/spring-cloud-netflix] and bootstrapped via Spring Cloud [http://cloud.spring.io/spring-cloud-static/spring-cloud.html].

Installation

	To run the Eureka discovery server, please use this WAR overlay [https://github.com/apereo/cas-discoveryserver-overlay].

	Look for a suitable and relevant ready-made Docker image via docker search eureka.

When deployed the following URLs become available:

| URL | Description
|——————–|———————————————–
| / | Home page listing service registrations.
| /eureka/apps | Raw registration metadata.

High Availability Mode

You always want to make sure the discovery server is run in high-availabilty mode. One option is to ensure each individual Eureka server is peer aware. See this guide [http://cloud.spring.io/spring-cloud-static/spring-cloud.html#_peer_awareness] to learn how to manage that.

CAS Discovery Service Clients

Each individual CAS server is given the ability to auto-register itself with the discovery server, provided configuration is made available to instruct the CAS server how to locate and connect to the discover server service.

Support is added by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-eureka-client</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties,
please review this guide.

Authentication

Support for HTTP basic authentication will be automatically added if one of Eureka server URLs in the configuration has credentials embedded in it (curl style, like http://user:password@localhost:8761/eureka).

Troubleshooting

To enable additional logging, configure the log4j configuration file to add the following levels:

<AsyncLogger name="com.netflix" level="debug" additivity="false">
 <AppenderRef ref="casConsole"/>
 <AppenderRef ref="casFile"/>
</AsyncLogger>

 Configuration

layout: default
title: CAS - Configuring Authentication Components

Configuration

The CAS authentication process is primarily controlled by an authentication manager, which orchestrates a collection of authentication handlers.

Authentication Manager

CAS ships with a single yet flexible authentication manager which performs authentication according to the following contract.

For any given credential the manager does the following:

	Iterate over all configured authentication handlers.

	Attempt to authenticate a credential if a handler supports it.

	On success attempt to resolve a principal.

	Check whether a resolver is configured for the handler that authenticated the credential.

	If a suitable resolver is found, attempt to resolve the principal.

	If a suitable resolver is not found, use the principal resolved by the authentication handler.

	Check whether the security policy (e.g. any, all) is satisfied.

	If security policy is met return immediately.

	Continue if security policy is not met.

	After all credentials have been attempted check security policy again and throw AuthenticationException if not satisfied.

There is an implicit security policy that requires at least one handler to successfully authenticate a credential.

To see the relevant list of CAS properties, please review this guide.

Authentication Sequence

At runtime, CAS maintains a collection of authentication handlers/strategies that typically execute one after another. Each CAS module that presents a form of authentication strategy will simply insert itself into this collection at bootstrap time. At the end of this process, the result of all authentication transactions is collected and optionally processed by an authentication policy where success/failure of certain strategies/sources may be taken into account to fully satisfy the authentication requirements. The collection of authentication handlers tries to preserve order in a rather more deterministic way. The idea is that adopters can assign an order value to an authentication handler thereby explicitly positioning it in the collection and controlling its execution sequence.

Authentication Handlers

There are a variety of authentication handlers and schemes supported by CAS. Use the menu to navigate around the site and choose.

Default CredentialsTo test the default authentication scheme in CAS,
use casuser and Mellon as the username and password respectively. These are automatically
configured via the static authencation handler, and MUST be removed from the configuration
prior to production rollouts.

To see the relevant list of CAS properties, please review this guide.

Authentication Policy

CAS presents a number of strategies for handling authentication security policies. Policies in general control the following:

	Should the authentication chain be stopped after a certain kind of authentication failure?

	Given multiple authentication handlers in a chain, what constitutes a successful authentication event?

Policies are typically activated after:

	An authentication failure has occurred.

	The authentication chain has finished execution.

Typical use cases of authentication policies may include:

	Enforce a specific authentication’s successful execution, for the entire authentication event to be considered successful.

	Ensure a specific class of failure is not evident in the authentication chain’s execution log.

	Ensure that all authentication schemes in the chain are executed successfully, for the entire authentication event to be considered successful.

To see the relevant list of CAS properties, please review this guide.

Principal Resolution

Please see this guide more full details on principal resolution.

Principal Transformation

Authentication handlers that generally deal with username-password credentials
can be configured to transform the user id prior to executing the authentication sequence.
Each authentication strategy in CAS provides settings to properly transform the principal.
Refer to the relevant settings for the authentication strategy at hand to learn more.

Long Term Authentication

CAS has support for long term Ticket Granting Tickets, a feature that is also referred to as “Remember Me”
to extend the length of the SSO session beyond the typical configuration.
Please see this guide for more details.

Proxy Authentication

Please see this guide for more details.

Multifactor Authentication (MFA)

Please see this guide for more details.

Login Throttling

CAS provides a facility for limiting failed login attempts to support password guessing and related abuse scenarios.
Please see this guide for additional details on login throttling.

SSO Session Cookie

A ticket-granting cookie is an HTTP cookie set by CAS upon the establishment of a single sign-on session.
This cookie maintains login state for the client, and while it is valid, the client can present it to CAS in lieu of primary credentials.
Please see this guide for additional details.

 Extending CAS Webflow

layout: default
title: CAS - Web Flow Extensions

Extending CAS Webflow

The objective of this guide is to better describe how CAS utilizes Spring Webflow to accommodate various authentication flows. Please remember that this is NOT to teach one how Spring Webflow itself works internally. If you want to learn more about Spring Webflow and understand the internals of actions, states, decisions and scopes please see this guide [http://projects.spring.io/spring-webflow/].

CAS by default operates on the following core webflow configuration files:

| Flow | Location
|———————|———————————————–
| login | src/main/resources/webflow/login-webflow.xml
| logout | src/main/resources/webflow/logout-webflow.xml

The above flow configuration files present a minimal structure for what CAS needs at its core to handle login and logout flows. It is important to note that at runtime many other actions and states are injected into either of these flows dynamically depending on the CAS configuration and presence of feature modules. Also note that each feature module itself may dynamically present other opiniated subflow configuration files that are automagically picked up at runtime.

So in truth, what you see above is not necessarily all of what you may get.

Live HappilyIt is best to AVOID overlaying/modifying flow configuration files by hand manually. The flow configuration files are not considered public APIs, are not compiled and in most cases are no candidates for backward-compatibility. CAS attempts to automate all webflow changes dynamically where appropriate. Staying away from manual changes will only make your future upgrades easier. Only do so in very advanced cases and be SURE to know what you are doing!

Modifying Webflow

In modest trivial cases, you may be able to simply overlay and modify the core flow configuration files to add or override the desired behavior. Again, think very carefully before introducing those changes into your deployment environment. Avoid making ad-hoc changes to the Webflow as much as possible and consider how the change you have in mind might be more suitable as a direct contribution to the CAS project itself so you can just take advantage of its configuration and NOT its maintenance.

To learn how to introduce new actions and state into a Spring Webflow, please see this guide [http://projects.spring.io/spring-webflow/].

Speak UpIf you find something that is broken where the webflow auto-configuration strategy fails to deliver as advertised, discuss that with the project community and submit a patch that corrects the bug or adds the desired behavior as a modest enhancement. Avoid one-off changes and make the change where the change belongs.

In more advanced cases where you may need to take a deep dive and alter core CAS behavior conditionally, you would need to take advantage of the CAS APIs to deliver changes. Using the CAS APIs directly does present the following advantages at some cost:

	Changes are all scoped to Java (Groovy, Kotlin, Clojure, etc).

	You have the full power of Java to dynamically and conditionally augment the Spring Webflow.

	Your changes are all self-contained.

	Changes are now part of the CAS APIs and they will be compiled. Breaking changes on upgrades, if any, should be noticed immediately at build time.

Design

Design your dynamic webflow configuration agent that alters the webflow using the following form:

public class SomethingWebflowConfigurer extends AbstractCasWebflowConfigurer {
 @Override
 protected void doInitialize() throws Exception {
 final Flow flow = super.getLoginFlow();
 // Magic happens; Call 'super' to see what you have access to and alter the flow.
 }
}

Register

You will then need to register your newly-designed component into the CAS application runtime:

package org.example.something;

@Configuration("somethingConfiguration")
public class SomethingConfiguration {

 @Autowired
 @Qualifier("loginFlowRegistry")
 private FlowDefinitionRegistry loginFlowDefinitionRegistry;

 @Autowired
 private FlowBuilderServices flowBuilderServices;

 @ConditionalOnMissingBean(name = "somethingWebflowConfigurer")
 @Bean
 public CasWebflowConfigurer somethingWebflowConfigurer() {
 final SomethingWebflowConfigurer w = new SomethingWebflowConfigurer();
 w.setLoginFlowDefinitionRegistry(this.loginFlowDefinitionRegistry);
 w.setFlowBuilderServices(this.flowBuilderServices);
 ...
 return w;
 }
}

Configuration classes need to be registered with CAS inside a src/main/resources/META-INF/spring.factories file:

org.springframework.boot.autoconfigure.EnableAutoConfiguration=org.example.something.SomethingConfiguration

See this guide [https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-developing-auto-configuration.html] for more info.

 OpenID Connect Authentication

layout: default
title: CAS - OpenID Connect Authentication

OpenID Connect Authentication

Allow CAS to act as an OpenId Connect Provider (OP).

Support is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-oidc</artifactId>
 <version>${cas.version}</version>
</dependency>

To learn more about OpenId Connect, please review this guide [http://openid.net/specs/openid-connect-basic-1_0.html].

The current implementation provides support for:

	Authorization Code Flow [http://openid.net/specs/openid-connect-basic-1_0.html]

	Implicit Flow [https://openid.net/specs/openid-connect-implicit-1_0.html]

	Dynamic Discovery [https://openid.net/specs/openid-connect-discovery-1_0.html]

	Administration and registration of OIDC clients and relying parties.

	Administration and registration of OIDC clients and relying parties via Dynamic Client Registration protocol [https://tools.ietf.org/html/draft-ietf-oauth-dyn-reg-management-01].

	Ability to resolve, map and release claims.

	Ability to configure expiration policies for various tokens.

Endpoints

| Field | Description
|———————————————–|——————————————————-
| /cas/oidc/.well-known | The discovery endpoint is a static page that you/clients use to query for CAS OIDC configuration information and metadata. No session is required. CAS returns basic information about endpoints, supported scopes, etc used for OIDC authentication.
| /cas/oidc/.well-known/openid-configuration | Same as above.
| /cas/oidc/jwks | A read-only endpoint that contains the server’s public signing keys, which clients may use to verify the digital signatures of access tokens and ID tokens issued by CAS.
| /cas/oidc/authorize | Authorization requests are handled here.
| /cas/oidc/profile | User profile requests are handled here.
| /cas/oidc/accessToken, /cas/oidc/token | Produces authorized access tokens.
| /cas/oidc/register | Register clients via the dynamic client registration [https://tools.ietf.org/html/draft-ietf-oauth-dyn-reg-management-01] protocol.

Register Clients

Clients can be registered with CAS in the following ways.

Statically

OpenID Connect clients can be statically registered with CAS as such:

{
 "@class" : "org.apereo.cas.services.OidcRegisteredService",
 "clientId": "client",
 "clientSecret": "secret",
 "serviceId" : "^<https://the-redirect-uri>",
 "signIdToken": true,
 "implicit": false,
 "name": "OIDC",
 "id": 1000,
 "evaluationOrder": 100,
 "jwks": "...",
 "encryptIdToken": false,
 "idTokenEncryptionAlg": "...",
 "idTokenEncryptionEncoding": "..."
}

| Field | Description
|——————————-|——————————————————————
| serviceId | The authorized redirect URI for this OIDC client.
| implicit | Whether the response produced for this service should be implicit [https://openid.net/specs/openid-connect-implicit-1_0.html].
| signIdToken | Whether ID tokens should be signed. Default is true.
| jwks | Resource path to the keystore location that holds the keys for this application.
| encryptIdToken | Whether ID tokens should be encrypted. Default is false.
| idTokenEncryptionAlg | The algorithm header value used to encrypt the id token.
| idTokenEncryptionEncoding | The algorithm method header value used to encrypt the id token.

Service definitions are typically managed by the service management facility.

Dynamically

Clients applications may dynamically be registered with CAS for authentication. By default, CAS operates
in a PROTECTED mode where the registration endpoint requires user authentication. This behavior may be relaxed via
CAS settings to allow CAS to operate in an OPEN mode.

Settings

To see the relevant list of CAS properties, please review this guide.

Server Configuration

Remember that OpenID Connect features of CAS require session affinity (and optionally session replication),
as the authorization responses throughout the login flow
are stored via server-backed session storage mechanisms. You will need to configure your deployment environment and load balancers accordinngly.

Claims

OpenID connect claims are simply treated as normal CAS attributes that need to
be resolved, mapped and released.

Scope-based Claims

You may chain various attribute release policies that authorize claim release based on specific scopes:

{
 "@class" : "org.apereo.cas.services.OidcRegisteredService",
 "clientId": "...",
 "clientSecret": "...",
 "serviceId" : "...",
 "name": "OIDC Test",
 "id": 10,
 "scopes" : ["java.util.HashSet",
 ["profile", "email", "address", "phone", "offline_access", "displayName", "eduPerson"]
]
}

Mapping Claims

Claims associated with a scope (i.e. given_name for profile) are fixed in the OpenID specification [http://openid.net/specs/openid-connect-basic-1_0.html]. In the event that custom arbitrary attributes should be mapped to claims, mappings can be defined in CAS settings to link a CAS-defined attribute to a fixed given scope. For instance, CAS configuration may allow the value of the attribute sys_given_name to be mapped and assigned to the claim given_name without having an impact on the attribute resolution configuration and all other CAS-enabled applications.

If mapping is not defined, by default CAS attributes are expected to match claim names.

To see the relevant list of CAS properties, please review this guide.

User-Defined Scopes

Note that in addition to standard system scopes, you may define your own custom scope with a number of attributes within. These such as displayName above, get bundled into a custom scope which can be used and requested by services and clients.

If you however wish to define your custom scopes as an extension of what OpenID Connect defines
such that you may bundle attributes together, then you need to first register your scope,
define its attribute bundle and then use it a given service definition such as eduPerson above.
Such user-defined scopes are also able to override the definition of system scopes.

To see the relevant list of CAS properties, please review this guide.

Authentication Context Class

Support for authentication context class references is implemented in form of acr_values as part of the original authorization request,
which is mostly taken into account by the multifactor authentication features of CAS.
Once successful, acr and amr values are passed back to the relying party as part of the id token.

Keystores

Each registered application in CAS can contain its own keystore as a jwks resource. By default,
a global keystore can be expected and defined via CAS properties. The format of the keystore
file is similar to the following:

{
 "keys": [
 {
 "d": "...",
 "e": "AQAB",
 "n": "...",
 "kty": "RSA",
 "kid": "cas"
 }
]
}

CAS will attempt to auto-generate a keystore if it can’t find one, but if you wish to generate one manually,
a JWKS can be generated using this tool [https://mkjwk.org/]
or this tool [http://connect2id.com/products/nimbus-jose-jwt/generator].

 Couchbase Ticket Registry

layout: default
title: CAS - Couchbase Ticket Registry

Couchbase Ticket Registry

Couchbase integration is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-couchbase-ticket-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

Couchbase [http://www.couchbase.com] is a highly available, open source NoSQL database server based on
Erlang/OTP [http://www.erlang.org] and its mnesia database. The intention of this
registry is to leverage the capability of Couchbase
server to provide high availability to CAS.

Configuration

To see the relevant list of CAS properties, please review this guide.

The Couchbase integration currently assumes that the ticket registries are stored
in their own buckets. You may optionally set passwords for the buckets and optionally configure
redundancy and replication as per normal Couchbase configuration.

The only truly mandatory setting is the list of nodes.
The other settings are optional, but this is designed to store data in buckets
so in reality the bucket property must also be set.

Expiration Policy

You will need to remember that every document in Couchbase contains the expiry property.
An expiration time-to-live value of 0 means that no expiration is set at all.
The expiration time starts when the document has been successfully stored on the server,
not when the document was created on the CAS server. In practice, the delta should be very very negligible.
Any expiration time larger than 30 days in seconds is considered absolute (as in a Unix time stamp)
and anything smaller is considered relative in seconds.

Troubleshooting

To enable additional logging, configure the log4j configuration file to add the following
levels:

...
<AsyncLogger name="com.couchbase" level="debug" additivity="false">
 <AppenderRef ref="console"/>
 <AppenderRef ref="file"/>
</AsyncLogger>
...

 Configuration Management

layout: default
title: CAS - Configuration Management

Configuration Management

The core foundations of CAS that deal with configuration management, settings and replication of changes
across multiple CAS nodes are all entirely handled automatically via the
Spring Cloud [https://github.com/spring-cloud/spring-cloud-config] project. The strategies listed below
present a very flexible and powerful way to manage CAS configuration for production deployments, by
allowing the CAS adopter to ONLY keep track of settings required for their specific deployment concerns
and leaving all else behind to be handled by the default CAS configuration.

The following strategies may be used to fully extend the CAS configuration model.

YAML or Properties?CAS configuration allows for both
YAML and Properties syntax in any of the below strategies used. It generally does not matter which syntax
is used, but when working with Unicode strings as properties values it does matter. Spring loads properties
files using the ISO-8859-1 encoding. YAML files are loaded with UTF-8 encoding. If you are setting Unicode
values try using a YAML configuration file.

Overview

CAS allows you to externalize your configuration so you can work with the same CAS instance in
different environments. You can use properties files, YAML files, environment variables and
command-line arguments to externalize configuration.

CAS uses a very particular order that is designed to allow sensible overriding of values. Properties passed to the CAS web application
are considered in the following order:

	Command line arguments, starting with -- (e.g. --server.port=9000)

	Properties from SPRING_APPLICATION_JSON (inline JSON embedded in an environment variable/system property)

	JNDI attributes from java:comp/env.

	Java System properties.

	OS environment variables.

	Configuration files (i.e. application.properties|yml) indicated by the configuration server and profile.

Managing ConfigurationIn order to manage
the CAS configuration, you should configure access
to CAS administration panels.

Configuration Server

CAS provides a built-in configuration server that is responsible for bootstrapping the configuration
environment and loading of externalized settings in a distributed system. You may have a central
place to manage external properties for CAS nodes across all environments. To learn more about how to manage the CAS configuration, please review this guide.

Extending CAS Configuration

To learn more about how to extend and customize the CAS configuration, please review this guide.

Auto Configuration Strategy

To see a complete list of CAS properties, please review this guide.

Note that CAS in most if not all cases will attempt to auto-configure the context based on the declaration
and presence of feature-specific dedicated modules. This generally SHOULD relieve the deployer
from manually massaging the application context via XML configuration files.

The idea is twofold:

	Declare your intention for a given CAS feature by declaring the appropriate module in your overlay.

	Optionally, configure the appropriate properties and settings.

CAS will automatically take care of injecting appropriate beans and other components into the runtime application context,
Depending on the presence of a module and/or its settings configured by the deployer.

No XMLAgain, the entire point of
the auto-configuration strategy is ensure deployers aren't swimming in a sea of XML files
configuring beans and such. CAS should take care of it all. If you find an instance where
this claim does not hold, consider that a "bug" and file a feature request.

 Password Policy Enforcement

layout: default
title: CAS - Password Policy Enforcement

Password Policy Enforcement

Password policy enforcement attempts to:

	Detect a number of scenarios that would otherwise prevent user authentication based on user account status.

	Warn users whose account status is near a configurable expiration date and redirect the flow to an external identity management system.

LDAP

The below scenarios are by default considered errors preventing authentication in a generic manner through
the normal CAS login flow. LPPE intercepts the authentication flow, detecting the above standard error codes.
Error codes are then translated into proper messages in the CAS login flow and would allow the user to take proper action,
fully explaining the nature of the problem.

	ACCOUNT_LOCKED

	ACCOUNT_DISABLED

	ACCOUNT_EXPIRED

	INVALID_LOGON_HOURS

	INVALID_WORKSTATION

	PASSWORD_MUST_CHANGE

	PASSWORD_EXPIRED

The translation of LDAP errors into CAS workflow is all
handled by ldaptive [http://www.ldaptive.org/docs/guide/authentication/accountstate]. To see the relevant list of CAS properties,
please review this guide.

Account Expiration Notification

LPPE is also able to warn the user when the account is about to expire. The expiration policy is
determined through pre-configured LDAP attributes with default values in place.

JDBC

A certain number of database authentication schemes have limited support for detecting locked/disabled/etc accounts
via column names that are defined in the CAS sttings. To see the relevant list of CAS properties,
please review this guide.

Password Management

CAS presents humble password management features. If authentication fails due to a rejected password policy, CAS is able to intercept
that request and allow the user to update the account password in place.

To learn more about this topic, please review this guide.

LDAP

The updated password may be stored inside an LDAP server.
To see the relevant list of CAS properties, please review this guide.

JDBC

The updated password may be stored inside a database.
To see the relevant list of CAS properties, please review this guide.

 Mongo Service Registry

layout: default
title: CAS - Mongo Service Registry

Mongo Service Registry

This registry uses a MongoDb [https://www.mongodb.org/] instance to load and persist service definitions.
Support is enabled by adding the following module into the Maven overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-mongo-service-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

Configuration

This implementation auto-configures most of the internal details.
To see the relevant list of CAS properties, please review this guide.

Auto Initialization

Upon startup and configuration permitting,
the registry is able to auto initialize itself from default
JSON service definitions available to CAS.

To see the relevant list of CAS properties, please review this guide.

 Multifactor Authentication (MFA)

layout: default
title: CAS - Multifactor Authentication

Multifactor Authentication (MFA)

CAS provides a framework for multifactor authentication (MFA). The design philosophy for MFA support follows from
the observation that institutional security policies with respect to MFA vary dramatically. We provide first class
API support for authenticating multiple credentials and a policy framework around authentication. The components
could be extended in a straightforward fashion to provide higher-level behaviors such as Webflow logic to assist,
for example, a credential upgrade scenario where a SSO session is started by a weaker credential but a particular
service demands re-authentication with a stronger credential.

The authentication subsystem in CAS natively supports handling multiple credentials. While the default login form
and Webflow tier are designed for the simple case of accepting a single credential, all core API components that
interface with the authentication subsystem accept one or more credentials to authenticate.

Supported Providers

The following multifactor providers are supported by CAS.

| Provider | Id | Instructions
|———————–|—————–|———————————————————-
| Duo Security | mfa-duo | See this guide.
| Authy Authenticator | mfa-authy | See this guide.
| YubiKey | mfa-yubikey | See this guide.
| RSA/RADIUS | mfa-radius | See this guide.
| WiKID | mfa-radius | See this guide.
| Google Authenticator | mfa-gauth | See this guide.
| Microsoft Azure | mfa-azure | See this guide.
| FIDO U2F | mfa-u2f | See this guide.
| Custom | Custom | See this guide.

Triggers

Multifactor authentication can be activated via a number of triggers.
To learn more, please see this guide.

Bypass Rules

Each multifactor provider is equipped with options to allow for MFA bypass. Once the provider
is chosen to honor the authentication request, bypass rules are then consulted to calculate
whether the provider should ignore the request and skip MFA conditionally.

Bypass rules allow for the following options for each provider:

	Skip multifactor authentication based on designated principal attribute names.

	...[and optionally] Skip multifactor authentication based on designated principal attribute values.

	Skip multifactor authentication based on designated authentication attribute names.

	...[and optionally] Skip multifactor authentication based on designated authentication attribute values.

	Skip multifactor authentication depending on method/form of primary authentication execution.

A few simple examples follow:

	Trigger MFA except when the principal carries an affiliation attribute whose value is either alum or member.

	Trigger MFA except when the principal carries a superAdmin attribute.

	Trigger MFA except if the method of primary authentication is SPNEGO.

	Trigger MFA except if credentials used for primary authentication are of type org.example.MyCredential.

Note that in addition to the above options, some multifactor authentication providers
may also skip and bypass the authentication request in the event that the authenticated principal does not quite “qualify”
for multifactor authentication. See the documentation for each specific provider to learn more.

To see the relevant list of CAS properties, please review this guide.

Note that ticket validation requests shall successfully go through if multifactor authentication is
bypassed for the given provider. In such cases, no authentication context is passed back to the application and
additional attributes are supplanted to let the application know multifactor authentication is bypassed for the provider.

Applications

MFA Bypass rules can be overridden per application via the CAS service registry. This is useful when
MFA may be turned on globally for all applications and services, yet a few selectively need to be excluded. Services
whose access should bypass MFA may be defined as such in the CAS service registry:

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "^(https|imaps)://.*",
 "id" : 100,
 "multifactorPolicy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceMultifactorPolicy",
 "multifactorAuthenticationProviders" : ["java.util.LinkedHashSet", ["mfa-duo"]],
 "bypassEnabled" : "true"
 }
}

Failure Modes

The authentication policy by default supports fail-closed mode, which means that if you attempt to exercise a particular
provider available to CAS and the provider cannot be reached, authentication will be stopped and an error
will be displayed. You can of course change this behavior so that authentication proceeds without exercising the provider
functionality, if that provider cannot respond.

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "^(https|imaps)://.*",
 "id" : 100,
 "multifactorPolicy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceMultifactorPolicy",
 "multifactorAuthenticationProviders" : ["java.util.LinkedHashSet", ["mfa-duo"]],
 "failureMode" : "CLOSED"
 }
}

The following failure modes are supported:

| Field | Description
|———————-|———————————-
| CLOSED | Authentication is blocked if the provider cannot be reached.
| OPEN | Authentication proceeds yet requested MFA is NOT communicated to the client if provider is unavailable.
| PHANTOM | Authentication proceeds and requested MFA is communicated to the client if provider is unavailable.
| NONE | Do not contact the provider at all to check for availability. Assume the provider is available.

A default failure mode can also be specified globally via CAS properties and may be overriden individually by CAS registered services.
To see the relevant list of CAS properties, please review this guide.

Multiple Provider Selection

In the event that multiple multifactor authentication providers are determined for a multifactor authentication transaction, by default CAS will attempt to sort the collection of providers based on their rank and will pick one with the highest priority. This use case may arise if multiple triggers are defined where each decides on a different multifactor authentication provider, or the same provider instance is configured multiple times with many instances.

Provider selection may also be carried out using Groovy scripting strategies more dynamically. The following example should serve as an outline of how to select multifactor providers based on a Groovy script:

import java.util.*

class SampleGroovyProviderSelection {
 def String run(final Object... args) {
 def service = args[0]
 def principal = args[1]
 def providersCollection = args[2]
 def logger = args[3]
 ...
 return "mfa-duo"
 }
}

To see the relevant list of CAS properties, please review this guide.

Ranking Providers

At times, CAS needs to determine the correct provider when step-up authentication is required. Consider for a moment that CAS
already has established an SSO session with/without a provider and has reached a level of authentication. Another incoming
request attempts to exercise that SSO session with a different and often competing authentication requirement that may differ
from the authentication level CAS has already established. Concretely, examples may be:

	CAS has achieved an SSO session, but a separate request now requires step-up authentication with DuoSecurity.

	CAS has achieved an SSO session with an authentication level satisfied by DuoSecurity, but a separate request now requires step-up authentication with YubiKey.

In certain scenarios, CAS will attempt to rank authentication levels and compare them with each other. If CAS already has achieved a level
that is higher than what the incoming request requires, no step-up authentication will be performed. If the opposite is true, CAS will
route the authentication flow to the required authentication level and upon success, will adjust the SSO session with the new higher
authentication level now satisfied.

Ranking of authentication methods is done per provider via specific properties for each in CAS settings. Note that
the higher the rank value is, the higher on the security scale it remains. A provider that ranks higher with a larger weight value trumps
and override others with a lower value.

Trusted Devices/Browsers

CAS is able to natively provide trusted device/browser features as part of any multifactor authentication flow. While certain providers tend to support this feature as well, this behavior is now put into CAS directly providing you with exact control over how devices/browsers are checked, how is that decision remembered for subsequent requests and how you might allow delegated management of those trusted decisions both for admins and end-users.

See this guide for more info.

Settings

To see the relevant list of CAS properties, please review this guide.

 DynamoDb Ticket Registry

layout: default
title: CAS - DynamoDb Ticket Registry

DynamoDb Ticket Registry

DynamoDb ticket registry integration is enabled by including the following dependency in the WAR overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-dynamodb-ticket-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

This registry stores tickets in DynamoDb [https://aws.amazon.com/dynamodb/] instances. Each ticket type is linked to a distinct table.

Configuration

You will need to provide CAS with your AWS credentials [https://aws.amazon.com/console/]. Also, to gain a better understanding
of DynamoDb’s core components and concepts, please start with this guide [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html] first.
To see the relevant list of CAS properties, please review this guide.

Troubleshooting

To enable additional logging, configure the log4j configuration file to add the following levels:

...
<AsyncLogger name="com.amazonaws" level="debug" additivity="false">
 <AppenderRef ref="console"/>
 <AppenderRef ref="file"/>
</AsyncLogger>
...

 Long Term Authentication

layout: default
title: CAS - Long Term Authentication

Long Term Authentication

This feature, also known as Remember Me, extends the length of the SSO session beyond the typical period of hours
such that users can go days or weeks without having to log in to CAS. See the
security guide
for discussion of security concerns related to long term authentication.

Policy and Deployment Considerations

While users can elect to establish a long term authentication session, the duration is established through
configuration as a matter of security policy. Deployers must determine the length of long term authentication sessions
by weighing convenience against security risks.

The use of long term authentication sessions dramatically increases the length of time ticket-granting tickets are
stored in the ticket registry. Loss of a ticket-granting ticket corresponding to a long-term SSO session would require
the user to re-authenticate to CAS. A security policy that requires that long term authentication sessions MUST NOT
be terminated prior to their natural expiration would mandate a ticket
registry component that provides for durable storage, such as the JPA Ticket Registry.

Configuration

Adjust your expiration policy so that remember-me authentication requests are
handled via a long-term timeout expiration policy, and other requests
are handled via the CAS default SSO session expiration policy.

To see the relevant list of CAS properties, please review this guide.

 Docker Installation

layout: default
title: CAS - Docker Installation

Docker Installation

Upon every release of the CAS software, docker images are tagged and pushed
to the Apereo CAS repository on Docker Hub [https://hub.docker.com/r/apereo/cas/].
Images can be pulled down via the following command:

docker pull apereo/cas:v[A.B.C]

...where [A.B.C] represents the image tag that is mapped to the CAS server version.

Overview

A dockerized CAS deployment simply is an existing CAS overlay project that is wrapped by Docker.
The overlay project already includes an embedded container to handle the deployment of CAS.
The overlay project also includes an embedded Maven so that builds and deployments of CAS
would not require a separate step to download and configure Maven.

The docker build is simply instructed to clone the CAS overlay project, use the embedded Maven
instance to package and build it and finally uses the embedded container to deploy the final
CAS web application. Once CAS is running, it will be available under ports 8080 and 8443.

Configuration

See the following guide [https://github.com/apereo/cas-webapp-docker].

The docker images that are hosted on Docker Hub are mostly meant to be used
as quickstarters and demos. You may also be able to use them as
base images to add your customizations into the image. The image
is built out of an existing CAS overlay.
So your approach could simply be to point your Dockerfile [https://github.com/apereo/cas-webapp-docker]
to your overlay and build your own specific images based on the
instructions listed here [https://github.com/apereo/cas-webapp-docker].

 Hazelcast Ticket Registry

layout: default
title: CAS - Hazelcast Ticket Registry

Hazelcast Ticket Registry

Hazelcast Ticket Registry is a distributed ticket registry implementation
based on Hazelcast distributed grid library [http://hazelcast.org/]. The registry implementation is
cluster-aware and is able to auto-join a cluster of all the CAS nodes that expose this registry.
Hazelcast will use port auto-increment feature to assign a TCP port to each member of a cluster starting
from initially provided arbitrary port (5701 by default).

Hazelcast will evenly distribute the ticket data among all the members of a cluster in a very
efficient manner. Also, by default, the data collection on each node is configured with 1 backup copy,
so that Hazelcast will use it to make strong data consistency guarantees i.e. the loss of data on
live nodes will not occur should any other primary data owner members die. The data will be
re-partitioned among the remaining live cluster members.

Support is enabled by the following module:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-support-hazelcast-ticket-registry</artifactId>
 <version>${cas.version}</version>
</dependency>

Configuration

This module has a configuration strategy which by default auto-configures a hazelcast instance used by the ticket registry
implementation to retrieve a Hazelcast’s map for its distributed tickets storage. Some aspects of hazelcast
configuration in this auto-configuration mode are controlled by CAS properties.

To see the relevant list of CAS properties, please review this guide.

Session MonintoringBe aware that under very heavy load and given a very large collection of tickets over time, session monitoring capabilities of CAS that report back ticket statistics based on the underlying Hazelcast ticket registry may end up timing out. This is due to the concern that Hazelcast attempts to run distributed queries across the entire network to collect, analyze and aggregate tickets which may be still active or in flux. If you do experience this behavior, it likely is preferable to turn off the session monitor.

For more information on the Hazelcast configuration options available,
refer to the Hazelcast configuration documentation [http://docs.hazelcast.org/docs/3.7/manual/html-single/index.html#hazelcast-configuration]

Logging

To enable additional logging for the registry, configure the log4j configuration file to add the following
levels:

...
<AsyncLogger name="com.hazelcast" level="debug" additivity="false">
 <AppenderRef ref="console"/>
 <AppenderRef ref="file"/>
</AsyncLogger>
...

 Clustered Deployments

layout: default
title: CAS - Configuration Management Clustered Deployment

Clustered Deployments

CAS uses the Spring Cloud Bus [http://cloud.spring.io/spring-cloud-static/spring-cloud.html]
to manage configuration in a distributed deployment. Spring Cloud Bus links nodes of a
distributed system with a lightweight message broker. This can then be used to broadcast state
changes (e.g. configuration changes) or other management instructions.

The bus supports sending messages to all nodes listening. Broadcasted events will attempt to update, refresh and
reload each CAS server application’s configuration.

If CAS nodes are not sharing a central location for configuration properties such that each
node contains a copy of the settings, any changes you make to one node must be replicated and
synced across all nodes so they are persisted on disk. The broadcast mechanism noted above only
applies changes to the runtime and the running CAS instance. Ideally, you should be keeping track
of CAS settings in a shared (git) repository (or better yet, inside a private Github repository perhaps)
where you make a change in one place and it’s broadcasted to all nodes. This model removes the need for
synchronizing changes across disks and CAS nodes.

To see the relevant list of CAS properties, please review this guide.

The transport mechanism for the bus to broadcast events is handled via one of the following components.

Troubleshooting

To enable additional logging, modify the logging configuration file to add the following:

<AsyncLogger name="org.springframework.amqp" level="debug" additivity="false">
 <AppenderRef ref="console"/>
 <AppenderRef ref="file"/>
</AsyncLogger>

RabbitMQ

This is the default option for broadcasting change events to CAS nodes.
RabbitMQ [https://www.rabbitmq.com/] is open source message broker
software (sometimes called message-oriented middleware) that implements
the Advanced Message Queuing Protocol (AMQP).

Support is enabled by including the following dependency in the final overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-core-configuration-cloud-amqp</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties for this feature, please review this guide.

Kafka

Apache Kafka is an open-source message broker project developed by the Apache Software Foundation.
The project aims to provide a unified, high-throughput, low-latency platform for handling real-time data feeds.
It is, in its essence, a “massively scalable pub/sub message queue architected as a distributed transaction log”,
making it highly valuable for enterprise infrastructures to process streaming data.

Support is enabled by including the following dependency in the final overlay:

<dependency>
 <groupId>org.apereo.cas</groupId>
 <artifactId>cas-server-core-configuration-cloud-kafka</artifactId>
 <version>${cas.version}</version>
</dependency>

To see the relevant list of CAS properties for this feature, please review this guide.

 SSO Session Cookie

layout: default
title: CAS - Configuring SSO Session Cookie

SSO Session Cookie

A ticket-granting cookie is an HTTP cookie set by CAS upon the establishment of a single sign-on session. This cookie maintains login
state for the client, and while it is valid, the client can present it to CAS in lieu of primary credentials.
Services can opt out of single sign-on through the renew parameter. See the CAS Protocol for more info.

The cookie value is linked to the active ticket-granting ticket, the remote IP address that initiated the request
as well as the user agent that submitted the request. The final cookie value is then encrypted and signed.

These keys MUST be regenerated per your specific environment. Each key
is a JSON Web Token with a defined length per the algorithm used for encryption and signing.

In the event that keys are not generated by the deployer, CAS will attempt to auto-generate keys and will output
the result for each respected key. The deployer MUST attempt to copy the generated keys over to the appropriate
settings in their CAS properties file, specially when running a multi-node CAS deployment. Failure to do so will prevent CAS
to appropriate decrypt and encrypt the cookie value and will prevent successful single sign-on.

SSO SessionsIt is possible to review the current collection of active SSO sessions,
and determine if CAS itself maintains an active SSO session via the CAS administration panels.

Configuration

To see the relevant list of CAS properties, please review this guide.

The cookie has the following properties:

	It is marked as secure.

	Depending on container support, the cookie would be marked as http-only automatically.

	The cookie value is encrypted and signed via secret keys that need to be generated upon deployment.

If keys are left undefined, on startup CAS will notice that no keys are defined and it will appropriately generate keys for you automatically. Your CAS logs will then show the following snippet:

WARN [org.apereo.cas.util.BaseStringCipherExecutor] - <Secret key for encryption is not defined. CAS will attempt to auto-generate the encryption key>
WARN [org.apereo.cas.util.BaseStringCipherExecutor] - <Generated encryption key ABC of size The generated key MUST be added to CAS settings.>
WARN [org.apereo.cas.util.BaseStringCipherExecutor] - <Secret key for signing is not defined. CAS will attempt to auto-generate the signing key>
WARN [org.apereo.cas.util.BaseStringCipherExecutor] - <Generated signing key XYZ of size The generated key MUST be added to CAS settings.>

You should then grab each generated key for encryption and signing, and put them inside your cas properties for each now-enabled
setting.

If you wish you manually generate keys, you may use the following tool [https://github.com/mitreid-connect/json-web-key-generator].

Disable Encryption

If you wish to turn off cookie encryption, see the relevant list of CAS properties
and review this guide.

Cookie Generation for Renewed Authentications

By default, forced authentication requests that challenge the user for credentials
either via the renew request parameter
or via the service-specific setting of
the CAS service registry will always generate the ticket-granting cookie
nonetheless. What this means is, logging in to a non-SSO-participating application
via CAS nonetheless creates a valid CAS single sign-on session that will be honored on a
subsequent attempt to authenticate to a SSO-participating application.

Plausibly, a CAS adopter may want this behavior to be different, such that logging in to a non-SSO-participating application
via CAS either does not create a CAS SSO session and the SSO session it creates is not honored for authenticating subsequently
to an SSO-participating application. This might better match user expectations.

To see the relevant list of CAS properties, please review this guide.

SSO Warning Session Cookie

A warning cookie set by CAS upon the establishment of the SSO session at the request of the user on the CAS login page.
The cookie is used later to warn and prompt
the user before a service ticket is generated and access to the service application is granted.
The cookie is controlled via:

To see the relevant list of CAS properties, please review this guide.

 CAS Groovy Shell

layout: default
title: CAS - Groovy Shell

CAS Groovy Shell

This is a Groovy shell embedded inside the CAS server [http://bit.ly/1P68woD]
that could be used by deployers to interact